Blog
About

  • Record: found
  • Abstract: found
  • Article: not found

Sedative and analgesic effects of intravenous xylazine and tramadol on horses

Read this article at

ScienceOpenPublisherPMC
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      This study was performed to evaluate the sedative and analgesic effects of xylazine (X) and tramadol (T) intravenously (IV) administered to horses. Six thoroughbred saddle horses each received X (1.0 mg/kg), T (2.0 mg/kg), and a combination of XT (1.0 and 2.0 mg/kg, respectively) IV. Heart rate (HR), respiratory rate (RR), rectal temperature (RT), indirect arterial pressure (IAP), capillary refill time (CRT), sedation, and analgesia (using electrical stimulation and pinprick) were measured before and after drug administration. HR and RR significantly decreased from basal values with X and XT treatments, and significantly increased with T treatment (p < 0.05). RT and IAP also significantly increased with T treatment (p < 0.05). CRT did not change significantly with any treatments. The onset of sedation and analgesia were approximately 5 min after both X and XT treatments; however, the XT combination produced a longer duration of sedation and analgesia than X alone. Two horses in the XT treatment group displayed excited transient behavior within 5 min of drug administration. The results suggest that the XT combination is useful for sedation and analgesia in horses. However, careful monitoring for excited behavior shortly after administration is recommended.

      Related collections

      Most cited references 22

      • Record: found
      • Abstract: found
      • Article: not found

      Opioid and nonopioid components independently contribute to the mechanism of action of tramadol, an 'atypical' opioid analgesic.

      Tramadol hydrochloride produced dose-related antinociception in mouse abdominal constriction [ED50 = 1.9 (1.2-2.6) mg/kg i.p.], hot-plate [48 degrees C, ED50 = 21.4 (18.4-25.3) mg/kg s.c.; 55 degrees C, ED50 = 33.1 (28.2-39.1) mg/kg s.c.] and tail-flick [ED50 = 22.8 (19.2-30.1) mg/kg s.c.] tests. Tramadol also displayed antinociceptive activity in the rat air-induced abdominal constriction [ED50 = 1.7 (0.7-3.2) mg/kg p.o.] and hot-plate [51 degrees C, ED50 = 19.5 (10.3-27.5) mg/kg i.p.] tests. The antinociceptive activity of tramadol in the mouse tail-flick test was completely antagonized by naloxone, suggesting an opioid mechanism of action. Consistent with this, tramadol bound with modest affinity to opioid mu receptors and with weak affinity to delta and kappa receptors, with Ki values of 2.1, 57.6 and 42.7 microM, respectively. The pA2 value for naloxone obtained with tramadol in the mouse tail-flick test was 7.76 and was not statistically different from that obtained with morphine (7.94). In CXBK mice, tramadol, like morphine, was devoid of antinociceptive activity after intracerebroventricular administration, suggesting that the opioid component of tramadol-induced antinociception is mediated by the mu-opioid receptor. In contrast to the mouse tail-flick test and unlike morphine or codeine, tramadol-induced antinociception in the mouse abdominal constriction, mouse hot-plate (48 degrees or 55 degrees C) or rat hot-plate tests was only partially antagonized by naloxone, implicating a nonopioid component. Further examination of the neurochemical profile of tramadol revealed that, unlike morphine, it also inhibited the uptake of norepinephrine (Ki = 0.79 microM) and serotonin (0.99 microM). The possibility that this additional activity contributes to the antinociceptive activity of tramadol was supported by the finding that systemically administered yohimbine or ritanserin blocked the antinociception produced by intrathecal administration of tramadol, but not morphine, in the rat tail-flick test. These results suggest that tramadol-induced antinociception is mediated by opioid (mu) and nonopioid (inhibition of monoamine uptake) mechanisms. This hypothesis is consistent with the clinical experience of a wide separation between analgesia and typical opioid side effects.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Tramadol: a review of its use in perioperative pain.

        Tramadol is a synthetic, centrally acting analgesic agent with 2 distinct, synergistic mechanisms of action, acting as both a weak opioid agonist and an inhibitor of monoamine neurotransmitter reuptake. The 2 enantiomers of racemic tramadol function in a complementary manner to enhance the analgesic efficacy and improve the tolerability profile of tramadol. In several comparative, well designed studies, oral and parenteral tramadol effectively relieved moderate to severe postoperative pain associated with surgery. Its overall analgesic efficacy was similar to that of morphine or alfentanil and superior to that of pentazocine. Tramadol provided effective analgesia in children and in adults for both inpatient and day surgery. Tramadol was generally well tolerated in clinical trials. The most common adverse events (incidence of 1.6 to 6.1%) were nausea, dizziness, drowsiness, sweating, vomiting and dry mouth. Importantly, unlike other opioids, tramadol has no clinically relevant effects on respiratory or cardiovascular parameters at recommended doses in adults or children. Tramadol also has a low potential for abuse or dependence. The efficacy of tramadol for the management of moderate to severe postoperative pain has been demonstrated in both inpatients and day surgery patients. Most importantly, unlike other opioids, tramadol has no clinically relevant effects on respiratory or cardiovascular parameters. Tramadol may prove particularly useful in patients with poor cardiopulmonary function, including the elderly, the obese and smokers, in patients with impaired hepatic or renal function, and in patients in whom nonsteroidal anti-inflammatory drugs are not recommended or need to be used with caution. Parenteral or oral tramadol has proved to be an effective and well tolerated analgesic agent in the perioperative setting.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Cardiovascular effects of medetomidine, detomidine and xylazine in horses.

           S Katoh,  Y Izumisawa,  T Seno (2000)
          The cardiovascular effects of medetomidine, detomidine, and xylazine in horses were studied. Fifteen horses, whose right carotid arteries had previously been surgically raised to a subcutaneous position during general anesthesia were used. Five horses each were given the following 8 treatments: an intravenous injection of 4 doses of medetomidine (3, 5, 7.5, and 10 microg/kg), 3 doses of detomidine (10, 20, and 40 microg/kg), and one dose of xylazine (1 mg/kg). Heart rate decreased, but not statistically significant. Atrio-ventricular block was observed following all treatments and prolonged with detomidine. Cardiac index (CI) and stroke volume (SV) were decreased with all treatments. The CI decreased to about 50% of baseline values for 5 min after 7.5 and 10 microg/kg medetomidine and 1 mg/kg xylazine, for 20 min after 20 microg/kg detomidine, and for 50 min after 40 microg/kg detomidine. All treatments produced an initial hypertension within 2 min of drug administration followed by a significant decrease in arterial blood pressure (ABP) in horses administered 3 to 7.5 microg/kg medetomidine and 1 mg/kg xylazine. Hypertension was significantly prolonged in 20 and 40 microg/kg detomidine. The hypotensive phase was not observed in 10 microg/kg medetomidine or detomidine. The changes in ABP were associated with an increase in peripheral vascular resistance. Respiratory rate was decreased for 40 to 120 min in 5, 7.5, and 10 microg/kg medetomidine and detomidine. The partial pressure of arterial oxygen decreased significantly in 10 microg/kg medetomidine and detomidine, while the partial pressure of arterial carbon dioxide did not change significantly. Medetomidine induced dose-dependent cardiovascular depression similar to detomidine. The cardiovascular effects of medetomidine and xylazine were not as prolonged as that of detomidine.
            Bookmark

            Author and article information

            Affiliations
            Department of Veterinary Surgery/Anesthesiology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea.
            Author notes
            Corresponding author: Tel: +82-2-880-1252; Fax: +82-2-880-1252, inhyunglee@ 123456snu.ac.kr
            Journal
            J Vet Sci
            JVS
            Journal of Veterinary Science
            The Korean Society of Veterinary Science
            1229-845X
            1976-555X
            September 2011
            23 August 2011
            : 12
            : 3
            : 281-286
            3165158
            21897102
            10.4142/jvs.2011.12.3.281
            Copyright © 2011 The Korean Society of Veterinary Science
            Categories
            Original Article

            Veterinary medicine

            tramadol, analgesia, sedation, xylazine, horse

            Comments

            Comment on this article