51
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A Link between Virulence and Homeostatic Responses to Hypoxia during Infection by the Human Fungal Pathogen Cryptococcus neoformans

      research-article
      , , *
      PLoS Pathogens
      Public Library of Science

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fungal pathogens of humans require molecular oxygen for several essential biochemical reactions, yet virtually nothing is known about how they adapt to the relatively hypoxic environment of infected tissues. We isolated mutants defective in growth under hypoxic conditions, but normal for growth in normoxic conditions, in Cryptococcus neoformans, the most common cause of fungal meningitis. Two regulatory pathways were identified: one homologous to the mammalian sterol-response element binding protein (SREBP) cholesterol biosynthesis regulatory pathway, and the other a two-component-like pathway involving a fungal-specific hybrid histidine kinase family member, Tco1. We show that cleavage of the SREBP precursor homolog Sre1—which is predicted to release its DNA-binding domain from the membrane—occurs in response to hypoxia, and that Sre1 is required for hypoxic induction of genes encoding for oxygen-dependent enzymes involved in ergosterol synthesis. Importantly, mutants in either the SREBP pathway or the Tco1 pathway display defects in their ability to proliferate in host tissues and to cause disease in infected mice, linking for the first time to our knowledge hypoxic adaptation and pathogenesis by a eukaryotic aerobe. SREBP pathway mutants were found to be a hundred times more sensitive than wild-type to fluconazole, a widely used antifungal agent that inhibits ergosterol synthesis, suggesting that inhibitors of SREBP processing could substantially enhance the potency of current therapies.

          Author Summary

          Opportunistic environmental pathogens adapt to hostile conditions within the host to cause disease. We describe two pathways in the pathogenic fungus Cryptococcus neoformans that are both necessary for adaptation to hypoxia and required for its virulence. One pathway uses a pathway homologous to the mammalian sterol-response element binding protein (SREBP) pathway to activate genes involved in sterol biosynthesis in response to low oxygen levels, while the other pathway involves the two-component hybrid histidine kinase protein Tco1. Mutant strains containing deletions of genes encoding components in either of these pathways were found to be less virulent in experimental mouse models. This study suggests that this pathogenic fungus experiences low levels of oxygen in the mammalian host, and that adaptation to these conditions is important for infection. Targeting components of the hypoxia response could yield more effective treatments for C. neoformans infections, which cause a large fraction of HIV/AIDS-related deaths worldwide. Notably, we find that mutants in the SREBP-like pathway are a hundred times more sensitive than wild-type cells to the widely used antifungal drug fluconazole.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Nonfilamentous C. albicans mutants are avirulent.

          Candida albicans and Saccharomyces cerevisiae switch from a yeast to a filamentous form. In Saccharomyces, this switch is controlled by two regulatory proteins, Ste12p and Phd1p. Single-mutant strains, ste12/ste12 or phd1/phd1, are partially defective, whereas the ste12/ste12 phd1/phd1 double mutant is completely defective in filamentous growth and is noninvasive. The equivalent cph1/cph1 efg1/efg1 double mutant in Candida (Cph1p is the Ste12p homolog and Efg1p is the Phd1p homolog) is also defective in filamentous growth, unable to form hyphae or pseudohyphae in response to many stimuli, including serum or macrophages. This Candida cph1/cph1 efg1/efg1 double mutant, locked in the yeast form, is avirulent in a mouse model.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen.

            Standard cell culture systems impose environmental oxygen (O(2)) levels of 20%, whereas actual tissue O(2) levels in both developing and adult brain are an order of magnitude lower. To address whether proliferation and differentiation of CNS precursors in vitro are influenced by the O(2) environment, we analyzed embryonic day 12 rat mesencephalic precursor cells in traditional cultures with 20% O(2) and in lowered O(2) (3 +/- 2%). Proliferation was promoted and apoptosis was reduced when cells were grown in lowered O(2), yielding greater numbers of precursors. The differentiation of precursor cells into neurons with specific neurotransmitter phenotypes was also significantly altered. The percentage of neurons of dopaminergic phenotype increased to 56% in lowered O(2) compared with 18% in 20% O(2). Together, the increases in total cell number and percentage of dopaminergic neurons resulted in a ninefold net increase in dopamine neuron yield. Differential gene expression analysis revealed more abundant messages for FGF8, engrailed-1, and erythropoietin in lowered O(2). Erythropoietin supplementation of 20% O(2) cultures partially mimicked increased dopaminergic differentiation characteristic of CNS precursors cultured in lowered O(2). These data demonstrate increased proliferation, reduced cell death, and enhanced dopamine neuron generation in lowered O(2), making this method an important advance in the ex vivo generation of specific neurons for brain repair.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Deciphering the model pathogenic fungus Cryptococcus neoformans.

              Cryptococcus neoformans is a basidiomycete fungal pathogen of humans that has diverged considerably from other model fungi such as Neurospora crassa, Aspergillus nidulans, Saccharomyces cerevisiae and the common human fungal pathogen Candida albicans. The recent completion of the genome sequences of two related C. neoformans strains and the ongoing genome sequencing of three other divergent Cryptococcus strains with different virulence phenotypes and environmental distributions should improve our understanding of this important pathogen. We discuss the biology of C. neoformans in light of this genomic data, with a special emphasis on the role that evolution and sexual reproduction have in the complex relationships of the fungus with the environment and the host.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                ppat
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                February 2007
                23 February 2007
                : 3
                : 2
                : e22
                Affiliations
                [1]Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
                David Geffen School of Medicine, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: hiten@ 123456biochem.ucsf.edu
                Article
                06-PLPA-RA-0472R2 plpa-03-02-11
                10.1371/journal.ppat.0030022
                1803011
                17319742
                21e00b87-307a-4bd2-935e-91be47fd3f87
                Copyright: © 2007 Chun et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 7 November 2006
                : 29 December 2006
                Page count
                Pages: 14
                Categories
                Research Article
                Genetics and Genomics
                Genetics and Genomics
                Infectious Diseases
                Molecular Biology
                Cryptococcus Neoformans
                Custom metadata
                Chun CD, Liu OW, Madhani HD (2007) A link between virulence and homeostatic responses to hypoxia during infection by the human fungal pathogen Cryptococcus neoformans. PLoS Pathog 3(2): e22. doi: 10.1371/journal.ppat.0030022

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article