23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A new therapeutic strategy for lung tissue injury induced by influenza with CR2 targeting complement inhibitior

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Influenza is a respiratory disease that seriously threatens human health. In fact, influenza virus itself does not make critical contribution to mortality induced by influenza, but "cytokine storm" produced by the excessive immune response triggered by the virus can result in inflammatory reaction of lung tissues and fatal lung tissue injury, and thus increase influenza mortality. Therefore, besides antiviral drugs, immunosuppression drugs should also be included in infection treatment.

          Presentation of the hypothesis

          Complement is the center of inflammatory reaction. If complement system is over activated, the body will have strong inflammatory reaction or tissue injury, resulting in pathological process. Many studies have proved that, inflammatory injury of lung tissues caused by influenza virus is closely related to complement activation. Therefore, inhibiting complement activation can significantly reduce inflammatory injury in lung tissues. As complement is both a physiological defense and pathological damage medium, systematic inhibition may result in side effects including infection. Therefore, we design targeting complement inhibitors for complement activation sites, i.e. with CR2 as targeting vector, complement inhibitors like CD59 and Crry are targeted to inflammatory sites to specially inhibit the complement activation in local injury, thus local inflammatory reaction is inhibited.

          Testing the hypothesis

          CR2-CD59 and CR2-Crry targeting complement inhibitors are fusion-expressed, and their biological activity is examined via in vivo and in vitro tests. CR2 targeting complement inhibitors are used to treat mouse influenza viral pneumonia model, with PBS treatment group as the control. The survival and lung tissue injury of the mice is observed and the effect of CR2 targeting complement inhibitors on pneumonia induced by influenza virus is evaluated.

          Implications of the hypothesis

          CR2 targeting complement inhibitors are expected to be ideal drugs for viral pneumonia.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          1918 Influenza: the Mother of All Pandemics

          The "Spanish" influenza pandemic of 1918–1919, which caused ≈50 million deaths worldwide, remains an ominous warning to public health. Many questions about its origins, its unusual epidemiologic features, and the basis of its pathogenicity remain unanswered. The public health implications of the pandemic therefore remain in doubt even as we now grapple with the feared emergence of a pandemic caused by H5N1 or other virus. However, new information about the 1918 virus is emerging, for example, sequencing of the entire genome from archival autopsy tissues. But, the viral genome alone is unlikely to provide answers to some critical questions. Understanding the 1918 pandemic and its implications for future pandemics requires careful experimentation and in-depth historical analysis.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Complement. Second of two parts.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Delayed antiviral plus immunomodulator treatment still reduces mortality in mice infected by high inoculum of influenza A/H5N1 virus.

              The mortality of human infection by influenza A/H5N1 virus can exceed 80%. The high mortality and its poor response to the neuraminidase inhibitor oseltamivir have been attributed to uncontrolled virus-induced cytokine storm. We challenged BALB/c mice with 1,000 LD50 of influenza A/Vietnam/1194/04. Survival, body weight, histopathology, inflammatory markers, viral loads, T lymphocyte counts, and neutralizing antibody response were documented in infected mice treated individually or in combination with zanamvir, celecoxib, gemfibrozil, and mesalazine. To imitate the real-life scenario, treatment was initiated at 48 h after viral challenge. There were significant improvements in survival rate (P = 0.02), survival time (P < 0.02), and inflammatory markers (P < 0.01) in the group treated with a triple combination of zanamivir, celecoxib, and mesalazine when compared with zanamivir alone. Zanamivir with or without immunomodulators reduced viral load to a similar extent. Insignificant prolongation of survival was observed when individual agents were used alone. Significantly higher levels of CD4+ and CD8+ T lymphocytes and less pulmonary inflammation were also found in the group receiving triple therapy. Zanamivir alone reduced viral load but not inflammation and mortality. The survival benefits of adding celecoxib and mesalazine to zanamivir could be caused by their synergistic effects in reducing cytokine dysfunction and preventing apoptosis. Combinations of a neuraminidase inhibitor with these immunomodulators should be considered in randomized controlled treatment trials of patients suffering from H5N1 infection.
                Bookmark

                Author and article information

                Journal
                Virol J
                Virology Journal
                BioMed Central
                1743-422X
                2010
                9 February 2010
                : 7
                : 30
                Affiliations
                [1 ]Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, China
                [2 ]Beijing Institute for Neuroscience, Capital Medical University, Beijing 100069, China
                [3 ]Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
                [4 ]State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
                Article
                1743-422X-7-30
                10.1186/1743-422X-7-30
                2829536
                20144216
                21ef0e70-c2c3-4cd3-bae3-5a844da730a2
                Copyright ©2010 Zhang et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 January 2010
                : 9 February 2010
                Categories
                Hypothesis

                Microbiology & Virology
                Microbiology & Virology

                Comments

                Comment on this article