21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      iPSC Bioprinting: Where are We at?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Here, we present a concise review of current 3D bioprinting technologies applied to induced pluripotent stem cells (iPSC). iPSC have recently received a great deal of attention from the scientific and clinical communities for their unique properties, which include abundant adult cell sources, ability to indefinitely self-renew and differentiate into any tissue of the body. Bioprinting of iPSC and iPSC derived cells combined with natural or synthetic biomaterials to fabricate tissue mimicked constructs, has emerged as a technology that might revolutionize regenerative medicine and patient-specific treatment. This review covers the advantages and disadvantages of bioprinting techniques, influence of bioprinting parameters and printing condition on cell viability, and commonly used iPSC sources, and bioinks. A clear distinction is made for bioprinting techniques used for iPSC at their undifferentiated stage or when used as adult stem cells or terminally differentiated cells. This review presents state of the art data obtained from major searching engines, including Pubmed/MEDLINE, Google Scholar, and Scopus, concerning iPSC generation, undifferentiated iPSC, iPSC bioprinting, bioprinting techniques, cartilage, bone, heart, neural tissue, skin, and hepatic tissue cells derived from iPSC.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanical forces direct stem cell behaviour in development and regeneration

          Stem cells and their local microenvironment, or niche, communicate through mechanical cues to regulate cell fate and cell behaviour and to guide developmental processes. During embryonic development, mechanical forces are involved in patterning and organogenesis. The physical environment of pluripotent stem cells regulates their self-renewal and differentiation. Mechanical and physical cues are also important in adult tissues, where adult stem cells require physical interactions with the extracellular matrix to maintain their potency. In vitro, synthetic models of the stem cell niche can be used to precisely control and manipulate the biophysical and biochemical properties of the stem cell microenvironment and to examine how the mode and magnitude of mechanical cues, such as matrix stiffness or applied forces, direct stem cell differentiation and function. Fundamental insights into the mechanobiology of stem cells also inform the design of artificial niches to support stem cells for regenerative therapies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts

            Abstract Generation of thick vascularized tissues that fully match the patient still remains an unmet challenge in cardiac tissue engineering. Here, a simple approach to 3D‐print thick, vascularized, and perfusable cardiac patches that completely match the immunological, cellular, biochemical, and anatomical properties of the patient is reported. To this end, a biopsy of an omental tissue is taken from patients. While the cells are reprogrammed to become pluripotent stem cells, and differentiated to cardiomyocytes and endothelial cells, the extracellular matrix is processed into a personalized hydrogel. Following, the two cell types are separately combined with hydrogels to form bioinks for the parenchymal cardiac tissue and blood vessels. The ability to print functional vascularized patches according to the patient's anatomy is demonstrated. Blood vessel architecture is further improved by mathematical modeling of oxygen transfer. The structure and function of the patches are studied in vitro, and cardiac cell morphology is assessed after transplantation, revealing elongated cardiomyocytes with massive actinin striation. Finally, as a proof of concept, cellularized human hearts with a natural architecture are printed. These results demonstrate the potential of the approach for engineering personalized tissues and organs, or for drug screening in an appropriate anatomical structure and patient‐specific biochemical microenvironment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Applications of Alginate-Based Bioinks in 3D Bioprinting

              Three-dimensional (3D) bioprinting is on the cusp of permitting the direct fabrication of artificial living tissue. Multicellular building blocks (bioinks) are dispensed layer by layer and scaled for the target construct. However, only a few materials are able to fulfill the considerable requirements for suitable bioink formulation, a critical component of efficient 3D bioprinting. Alginate, a naturally occurring polysaccharide, is clearly the most commonly employed material in current bioinks. Here, we discuss the benefits and disadvantages of the use of alginate in 3D bioprinting by summarizing the most recent studies that used alginate for printing vascular tissue, bone and cartilage. In addition, other breakthroughs in the use of alginate in bioprinting are discussed, including strategies to improve its structural and degradation characteristics. In this review, we organize the available literature in order to inspire and accelerate novel alginate-based bioink formulations with enhanced properties for future applications in basic research, drug screening and regenerative medicine.
                Bookmark

                Author and article information

                Journal
                Materials (Basel)
                Materials (Basel)
                materials
                Materials
                MDPI
                1996-1944
                01 August 2019
                August 2019
                : 12
                : 15
                : 2453
                Affiliations
                [1 ]Biomaterials Design and Tissue Engineering Lab, School of Chemistry, University of New South Wales, New South Wales 2052, Australia
                [2 ]School of Materials Science and Engineering, University of New South Wales, New South Wales 2052, Australia
                Author notes
                Article
                materials-12-02453
                10.3390/ma12152453
                6696162
                31374871
                21ef8ecf-4897-4bfe-bd0a-485b373ff1bf
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 07 July 2019
                : 30 July 2019
                Categories
                Review

                3d bioprinting,ipsc,tissue engineering,pluripotent stem cells,biofabrication

                Comments

                Comment on this article