0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Elucidation of the Molecular Mechanisms Underlying Sorafenib-Induced Hepatotoxicity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sorafenib is a small, orally-active multikinase inhibitor that is most frequently used for the management of renal cell carcinoma, hepatocellular carcinoma, and radioactive iodine-resistant thyroid carcinoma. However, recent reports have associated sorafenib with hepatotoxicity that can limit its clinical application, although the mechanism of hepatotoxicity is still to be elucidated. Thus, our study was designed to explore the molecular mechanisms underlying sorafenib-induced hepatotoxicity in an in vivo model. Twenty male adult Wistar rats were randomly placed into two groups; the first group received an oral dose of normal saline (vehicle), and the second received sorafenib (30 mg/kg) once daily for twenty-one consecutive days. After twenty-one days, liver tissues and blood samples were used for gene expression, protein expression, and biochemical analysis. Sorafenib treatment resulted in markedly increased levels of alanine aminotransferase and alkaline phosphatase, which indicate the presence of liver damage. Additionally, sorafenib administration induced the inflammatory and oxidative stress marker NF- κB-p65, while antioxidant enzymes were attenuated. Moreover, sorafenib caused upregulation of both gene and protein for the apoptotic markers cleaved Caspase-3, Bax, and Bid, and downregulation of the antiapoptotic protein Bcl-2. In conclusion, our findings suggest that sorafenib administration is associated with hepatotoxicity, which might be due to the activation of oxidative stress and apoptotic pathways.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling.

          Although patients with advanced refractory solid tumors have poor prognosis, the clinical development of targeted protein kinase inhibitors offers hope for the future treatment of many cancers. In vivo and in vitro studies have shown that the oral multikinase inhibitor, sorafenib, inhibits tumor growth and disrupts tumor microvasculature through antiproliferative, antiangiogenic, and/or proapoptotic effects. Sorafenib has shown antitumor activity in phase II/III trials involving patients with advanced renal cell carcinoma and hepatocellular carcinoma. The multiple molecular targets of sorafenib (the serine/threonine kinase Raf and receptor tyrosine kinases) may explain its broad preclinical and clinical activity. This review highlights the antitumor activity of sorafenib across a variety of tumor types, including renal cell, hepatocellular, breast, and colorectal carcinomas in the preclinical setting. In particular, preclinical evidence that supports the different mechanisms of action of sorafenib is discussed.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Caspases: intracellular signaling by proteolysis.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Targeting RTK Signaling Pathways in Cancer

              The RAS/MAP kinase and the RAS/PI3K/AKT pathways play a key role in the regulation of proliferation, differentiation and survival. The induction of these pathways depends on Receptor Tyrosine Kinases (RTKs) that are activated upon ligand binding. In cancer, constitutive and aberrant activations of components of those pathways result in increased proliferation, survival and metastasis. For instance, mutations affecting RTKs, Ras, B-Raf, PI3K and AKT are common in perpetuating the malignancy of several types of cancers and from different tissue origins. Therefore, these signaling pathways became prime targets for cancer therapy. This review aims to provide an overview about the most frequently encountered mutations, the pathogenesis that results from such mutations and the known therapeutic strategies developed to counteract their aberrant functions.
                Bookmark

                Author and article information

                Contributors
                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi
                1942-0900
                1942-0994
                2020
                14 May 2020
                : 2020
                : 7453406
                Affiliations
                1Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
                2Department of Pathology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
                Author notes

                Academic Editor: Antonio Desmond McCarthy

                Author information
                https://orcid.org/0000-0001-7569-4287
                https://orcid.org/0000-0003-2382-5892
                https://orcid.org/0000-0003-3924-593X
                Article
                10.1155/2020/7453406
                7245685
                21f4cf64-3ea6-4da6-8272-7c7e550bba0e
                Copyright © 2020 Abdullah F. AlAsmari et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 5 March 2020
                : 23 April 2020
                : 28 April 2020
                Funding
                Funded by: Deanship of Scientific Research, King Saud University
                Award ID: RG-1441-451
                Categories
                Research Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article