6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Estrogen induces phosphorylation of prolactin through p21-activated kinase 2 activation in the mouse pituitary gland

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A phosphorylated prolactin is a kind of modified prolactin, which is produced through phosphorylation of native prolactin (PRL) by p21-activated kinase 2 (PAK2) in secretory granules in lactotrophs. Phosphorylated prolactin is involved in the regulation of the estrous cycle and in apoptosis in cancer cells, which seem to have important physiological and pathological roles, respectively. In previous research, it has been reported that estrogen induced the phosphorylation of prolactin in the mouse pituitary gland. However, the relationship between estrogen and PAK2 in the production of phosphorylated PRL has not been clarified yet. In order to examine whether PAK2 is involved in PRL phosphorylation by estrogen, we analyzed PAK2 protein levels in mice and phosphorylated prolactin levels in mouse pituitary cells by western blot analysis. The ratio of phosphorylated PAK2/total PAK2 was increased in estrogen implanted mice, but PAK2 protein and gene expression levels were decreased. In addition, the ratio of phosphorylated prolactin/non-phosphorylated prolactin was decreased in primary pituitary cells with introduced siPAK2. These findings suggest that estrogen could induce the phosphorylation of PRL through PAK2 activation. Therefore, this study contributes to better understanding of the mechanism of phosphorylated PRL production in physiological and pathological conditions associated with estrogen.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice.

          PRL is an anterior pituitary hormone that, along with GH and PLs, forms a family of hormones that probably resulted from the duplication of an ancestral gene. The PRLR is also a member of a larger family, known as the cytokine class-1 receptor superfamily, which currently has more than 20 different members. PRLRs or binding sites are widely distributed throughout the body. In fact, it is difficult to find a tissue that does not express any PRLR mRNA or protein. In agreement with this wide distribution of receptors is the fact that now more than 300 separate actions of PRL have been reported in various vertebrates, including effects on water and salt balance, growth and development, endocrinology and metabolism, brain and behavior, reproduction, and immune regulation and protection. Clearly, a large proportion of these actions are directly or indirectly associated with the process of reproduction, including many behavioral effects. PRL is also becoming well known as an important regulator of immune function. A number of disease states, including the growth of different forms of cancer as well as various autoimmune diseases, appear to be related to an overproduction of PRL, which may act in an endocrine, autocrine, or paracrine manner, or via an increased sensitivity to the hormone. The first step in the mechanism of action of PRL is the binding to a cell surface receptor. The ligand binds in a two-step process in which site 1 on PRL binds to one receptor molecule, after which a second receptor molecule binds to site 2 on the hormone, forming a homodimer consisting of one molecule of PRL and two molecules of receptor. The PRLR contains no intrinsic tyrosine kinase cytoplasmic domain but associates with a cytoplasmic tyrosine kinase, JAK2. Dimerization of the receptor induces tyrosine phosphorylation and activation of the JAK kinase followed by phosphorylation of the receptor. Other receptor-associated kinases of the Src family have also been shown to be activated by PRL. One major pathway of signaling involves phosphorylation of cytoplasmic State proteins, which themselves dimerize and translocate to nucleus and bind to specific promoter elements on PRL-responsive genes. In addition, the Ras/Raf/MAP kinase pathway is also activated by PRL and may be involved in the proliferative effects of the hormone. Finally, a number of other potential mediators have been identified, including IRS-1, PI-3 kinase, SHP-2, PLC gamma, PKC, and intracellular Ca2+. The technique of gene targeting in mice has been used to develop the first experimental model in which the effect of the complete absence of any lactogen or PRL-mediated effects can be studied. Heterozygous (+/-) females show almost complete failure to lactate after the first, but not subsequent, pregnancies. Homozygous (-/-) females are infertile due to multiple reproductive abnormalities, including ovulation of premeiotic oocytes, reduced fertilization of oocytes, reduced preimplantation oocyte development, lack of embryo implantation, and the absence of pseudopregnancy. Twenty per cent of the homozygous males showed delayed fertility. Other phenotypes, including effects on the immune system and bone, are currently being examined. It is clear that there are multiple actions associated with PRL. It will be important to correlate known effects with local production of PRL to differentiate classic endocrine from autocrine/paracrine effects. The fact that extrapituitary PRL can, under some circumstances, compensate for pituitary PRL raises the interesting possibility that there may be effects of PRL other than those originally observed in hypophysectomized rats. The PRLR knockout mouse model should be an interesting system by which to look for effects activated only by PRL or other lactogenic hormones. On the other hand, many of the effects reported in this review may be shared with other hormones, cytokines, or growth factors and thus will be more difficult to study. (ABSTRACT TRUNCATED)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prolactin: structure, function, and regulation of secretion.

            Prolactin is a protein hormone of the anterior pituitary gland that was originally named for its ability to promote lactation in response to the suckling stimulus of hungry young mammals. We now know that prolactin is not as simple as originally described. Indeed, chemically, prolactin appears in a multiplicity of posttranslational forms ranging from size variants to chemical modifications such as phosphorylation or glycosylation. It is not only synthesized in the pituitary gland, as originally described, but also within the central nervous system, the immune system, the uterus and its associated tissues of conception, and even the mammary gland itself. Moreover, its biological actions are not limited solely to reproduction because it has been shown to control a variety of behaviors and even play a role in homeostasis. Prolactin-releasing stimuli not only include the nursing stimulus, but light, audition, olfaction, and stress can serve a stimulatory role. Finally, although it is well known that dopamine of hypothalamic origin provides inhibitory control over the secretion of prolactin, other factors within the brain, pituitary gland, and peripheral organs have been shown to inhibit or stimulate prolactin secretion as well. It is the purpose of this review to provide a comprehensive survey of our current understanding of prolactin's function and its regulation and to expose some of the controversies still existing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms for pituitary tumorigenesis: the plastic pituitary.

              The anterior pituitary gland integrates the repertoire of hormonal signals controlling thyroid, adrenal, reproductive, and growth functions. The gland responds to complex central and peripheral signals by trophic hormone secretion and by undergoing reversible plastic changes in cell growth leading to hyperplasia, involution, or benign adenomas arising from functional pituitary cells. Discussed herein are the mechanisms underlying hereditary pituitary hypoplasia, reversible pituitary hyperplasia, excess hormone production, and tumor initiation and promotion associated with normal and abnormal pituitary differentiation in health and disease.
                Bookmark

                Author and article information

                Journal
                J Reprod Dev
                J Reprod Dev
                JRD
                The Journal of Reproduction and Development
                The Society for Reproduction and Development
                0916-8818
                1348-4400
                19 September 2020
                December 2020
                : 66
                : 6
                : 571-578
                Affiliations
                [1) ]Laboratory of Functional Anatomy, Department of Life Sciences, Faculty of Agriculture, Meiji University, Kanagawa 214-8571, Japan
                Author notes
                Correspondence: K Morohoshi (e-mail: k_morohoshi@ 123456meiji.ac.jp )
                Article
                2020-080
                10.1262/jrd.2020-080
                7768169
                32963147
                21f62c7d-6384-4097-b15e-c1c0ec654de9
                ©2020 Society for Reproduction and Development

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/ )

                History
                : 17 June 2020
                : 09 September 2020
                Categories
                Original Article

                estrogen,pak2,phosphorylation,pituitary,prolactin
                estrogen, pak2, phosphorylation, pituitary, prolactin

                Comments

                Comment on this article