27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mitochondria mediate cell membrane repair and contribute to Duchenne muscular dystrophy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dystrophin deficiency is the genetic basis for Duchenne muscular dystrophy (DMD), but the cellular basis of progressive myofiber death in DMD is not fully understood. Using two dystrophin-deficient mdx mouse models, we find that the mitochondrial dysfunction is among the earliest cellular deficits of mdx muscles. Mitochondria in dystrophic myofibers also respond poorly to sarcolemmal injury. These mitochondrial deficits reduce the ability of dystrophic muscle cell membranes to repair and are associated with a compensatory increase in dysferlin-mediated membrane repair proteins. Dysferlin deficit in mdx mice further compromises myofiber cell membrane repair and enhances the muscle pathology at an asymptomatic age for dysferlin-deficient mice. Restoring partial dystrophin expression by exon skipping improves mitochondrial function and offers potential to improve myofiber repair. These findings identify that mitochondrial deficit in muscular dystrophy compromises the repair of injured myofibers and show that this repair mechanism is distinct from and complimentary to the dysferlin-mediated repair of injured myofibers.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Dystrophin protects the sarcolemma from stresses developed during muscle contraction.

          The protein dystrophin, normally found on the cytoplasmic surface of skeletal muscle cell membranes, is absent in patients with Duchenne muscular dystrophy as well as mdx (X-linked muscular dystrophy) mice. Although its primary structure has been determined, the precise functional role of dystrophin remains the subject of speculation. In the present study, we demonstrate that dystrophin-deficient muscle fibers of the mdx mouse exhibit an increased susceptibility to contraction-induced sarcolemmal rupture. The level of sarcolemmal damage is directly correlated with the magnitude of mechanical stress placed upon the membrane during contraction rather than the number of activations of the muscle. These findings strongly support the proposition that the primary function of dystrophin is to provide mechanical reinforcement to the sarcolemma and thereby protect it from the membrane stresses developed during muscle contraction. Furthermore, the methodology used in this study should prove useful in assessing the efficacy of dystrophin gene therapy in the mdx mouse.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stem and progenitor cells in skeletal muscle development, maintenance, and therapy.

            Satellite cells are dormant progenitors located at the periphery of skeletal myofibers that can be triggered to proliferate for both self-renewal and differentiation into myogenic cells. In addition to anatomic location, satellite cells are typified by markers such as M-cadherin, Pax7, Myf5, and neural cell adhesion molecule-1. The Pax3 and Pax7 transcription factors play essential roles in the early specification, migration, and myogenic differentiation of satellite cells. In addition to muscle-committed satellite cells, multi-lineage stem cells encountered in embryonic, as well as adult, tissues exhibit myogenic potential in experimental conditions. These multi-lineage stem cells include side-population cells, muscle-derived stem cells (MDSCs), and mesoangioblasts. Although the ontogenic derivation, identity, and localization of these non-conventional myogenic cells remain elusive, recent results suggest their ultimate origin in blood vessel walls. Indeed, purified pericytes and endothelium-related cells demonstrate high myogenic potential in culture and in vivo. Allogeneic myoblasts transplanted into Duchenne muscular dystrophy (DMD) patients have been, in early trials, largely inefficient owing to immune rejection, rapid death, and limited intramuscular migration--all obstacles that are now being alleviated, at least in part, by more efficient immunosuppression and escalated cell doses. As an alternative to myoblast transplantation, stem cells such as mesoangioblasts and CD133+ progenitors administered through blood circulation have recently shown great potential to regenerate dystrophic muscle.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of muscle degeneration, regeneration, and repair in the muscular dystrophies.

              To withstand the rigors of contraction, muscle fibers have specialized protein complexes that buffer against mechanical stress and a multifaceted repair system that is rapidly activated after injury. Genetic studies first identified the mechanosensory signaling network that connects the structural elements of muscle and, more recently, have identified repair elements of muscle. Defects in the genes encoding the components of these systems lead to muscular dystrophy, a family of genetic disorders characterized by progressive muscle wasting. Although the age of onset, affected muscles, and severity vary considerably, all muscular dystrophies are characterized by muscle necrosis that overtakes the regenerative capacity of muscle. The resulting replacement of muscle by fatty and fibrous tissue leaves muscle increasingly weak and nonfunctional. This review discusses the cellular mechanisms that are primarily and secondarily disrupted in muscular dystrophy, focusing on membrane degeneration, muscle regeneration, and the repair of muscle.
                Bookmark

                Author and article information

                Journal
                Cell Death Differ
                Cell Death Differ
                Cell Death and Differentiation
                Nature Publishing Group
                1350-9047
                1476-5403
                February 2017
                11 November 2016
                1 February 2017
                : 24
                : 2
                : 330-342
                Affiliations
                [1 ]Center for Genetic Medicine Research, Children's National Health System , 111 Michigan Avenue NW, Washington, DC 20010, USA
                [2 ]Institute for Biomedical Sciences, The George Washington University , 2300 Eye Street, N.W., Ross 605, Washington, DC 20037, USA
                [3 ]Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry , Tokyo, Japan
                [4 ]Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences , Washington, DC 20037, USA
                [5 ]Department of Pediatrics, George Washington University School of Medicine and Health Sciences , Washington, DC 20037, USA
                Author notes
                [* ]Center for Genetic Medicine Research, Children's National Medical Center , 111 Michigan Avenue NW, Washington, DC 20010, USA. Tel: 202 476 6456; Fax: 202 476 6014; E-mail: jkjaiswal@ 123456cnmc.org
                [6]

                These authors contributed equally to this work.

                [7]

                Current address: Division of Clinical Review, Office of Bioequivalence, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA

                [8]

                Current address: Faculté de Médecine de la Timone, Université de la Méditerranée, Myologie translationnelle, Marseille, France

                Article
                cdd2016127
                10.1038/cdd.2016.127
                5299714
                27834955
                21fb8b44-5e2e-4a42-8cc3-de35b318adf9
                Copyright © 2017 The Author(s)

                This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

                History
                : 02 June 2016
                : 02 September 2016
                : 28 September 2016
                Categories
                Original Paper

                Cell biology
                Cell biology

                Comments

                Comment on this article