2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A high-gain cladded waveguide amplifier on erbium doped thin-film lithium niobate fabricated using photolithography assisted chemo-mechanical etching

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Erbium doped integrated waveguide amplifier and laser prevail in power consumption, footprint, stability and scalability over the counterparts in bulk materials, underpinning the lightwave communication and large-scale sensing. Subject to the highly confined mode and moderate propagation loss, gain and power scaling in such integrated micro-to-nanoscale devices prove to be more challenging compared to their bulk counterparts. In this work, stimulated by the prevalent success of double-cladding optical fiber in high-gain/power operation, a Ta2O5 cladding is employed in the erbium doped lithium niobate (LN) waveguide amplifier fabricated on the thin film lithium niobate on insulator (LNOI) wafer by the photolithography assisted chemomechanical etching (PLACE) technique. Above 20 dB small signal internal net gain is achieved at the signal wavelength around 1532 nm in the 10 cm long LNOI amplifier pumped by the diode laser at ~980 nm. Experimental characterizations reveal the advantage of Ta2O5 cladding in higher optical gain compared with the air-clad amplifier, which is further explained by the theoretical modeling of the LNOI amplifier including the guided mode structures and the steady-state response of erbium ions.

          Related collections

          Author and article information

          Journal
          10 November 2021
          Article
          2111.05571
          2203af1d-3fcb-46a8-996e-bac0da8fda7a

          http://creativecommons.org/licenses/by-sa/4.0/

          Custom metadata
          11 pages, 5 figures
          physics.optics physics.app-ph

          Technical & Applied physics, Optical materials & Optics

          Comments

          Comment on this article