6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neurodegeneration and Neuro-Regeneration—Alzheimer’s Disease and Stem Cell Therapy

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aging causes many changes in the human body, and is a high risk for various diseases. Dementia, a common age-related disease, is a clinical disorder triggered by neurodegeneration. Brain damage caused by neuronal death leads to cognitive decline, memory loss, learning inabilities and mood changes. Numerous disease conditions may cause dementia; however, the most common one is Alzheimer’s disease (AD), a futile and yet untreatable illness. Adult neurogenesis carries the potential of brain self-repair by an endogenous formation of newly-born neurons in the adult brain; however it also declines with age. Strategies to improve the symptoms of aging and age-related diseases have included different means to stimulate neurogenesis, both pharmacologically and naturally. Finally, the regulatory mechanisms of stem cells neurogenesis or a functional integration of newborn neurons have been explored to provide the basis for grafted stem cell therapy. This review aims to provide an overview of AD pathology of different neural and glial cell types and summarizes current strategies of experimental stem cell treatments and their putative future use in clinical settings.

          Related collections

          Most cited references131

          • Record: found
          • Abstract: found
          • Article: not found

          TREM2 Binds to Apolipoproteins, Including APOE and CLU/APOJ, and Thereby Facilitates Uptake of Amyloid-Beta by Microglia.

          Genetic variants of TREM2, a protein expressed selectively by microglia in the brain, are associated with Alzheimer's disease (AD). Starting from an unbiased protein microarray screen, we identified a set of lipoprotein particles (including LDL) and apolipoproteins (including CLU/APOJ and APOE) as ligands of TREM2. Binding of these ligands by TREM2 was abolished or reduced by disease-associated mutations. Overexpression of wild-type TREM2 was sufficient to enhance uptake of LDL, CLU, and APOE in heterologous cells, whereas TREM2 disease variants were impaired in this activity. Trem2 knockout microglia showed reduced internalization of LDL and CLU. β-amyloid (Aβ) binds to lipoproteins and this complex is efficiently taken up by microglia in a TREM2-dependent fashion. Uptake of Aβ-lipoprotein complexes was reduced in macrophages from human subjects carrying a TREM2 AD variant. These data link three genetic risk factors for AD and reveal a possible mechanism by which mutant TREM2 increases risk of AD. VIDEO ABSTRACT.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Astrocytic purinergic signaling coordinates synaptic networks.

            To investigate the role of astrocytes in regulating synaptic transmission, we generated inducible transgenic mice that express a dominant-negative SNARE domain selectively in astrocytes to block the release of transmitters from these glial cells. By releasing adenosine triphosphate, which accumulates as adenosine, astrocytes tonically suppressed synaptic transmission, thereby enhancing the dynamic range for long-term potentiation and mediated activity-dependent, heterosynaptic depression. These results indicate that astrocytes are intricately linked in the regulation of synaptic strength and plasticity and provide a pathway for synaptic cross-talk.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Compromised autophagy and neurodegenerative diseases.

              Most neurodegenerative diseases that afflict humans are associated with the intracytoplasmic deposition of aggregate-prone proteins in neurons and with mitochondrial dysfunction. Autophagy is a powerful process for removing such proteins and for maintaining mitochondrial homeostasis. Over recent years, evidence has accumulated to demonstrate that upregulation of autophagy may protect against neurodegeneration. However, autophagy dysfunction has also been implicated in the pathogenesis of various diseases. This Review summarizes the progress that has been made in our understanding of how perturbations in autophagy are linked with neurodegenerative diseases and the potential therapeutic strategies resulting from the modulation of this process.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                31 August 2019
                September 2019
                : 20
                : 17
                : 4272
                Affiliations
                [1 ]Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
                [2 ]Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, 01069 Dresden, Germany
                Author notes
                [* ]Correspondence: mhhs@ 123456mailbox.tu-dresden.de ; Tel.: +49-351-458-6110
                [†]

                Verica Vasic and Kathrin Barth are both co-first author.

                Article
                ijms-20-04272
                10.3390/ijms20174272
                6747457
                31480448
                220de9ae-aaa7-4246-ae92-14a0e4299c6a
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 23 July 2019
                : 28 August 2019
                Categories
                Review

                Molecular biology
                neurodegeneration,alzheimer’s disease,neuro-regeneration,stem cell therapies

                Comments

                Comment on this article