Salvianolic acid B (SalB) demonstrates diverse clinical applications, particularly in cardiovascular and cerebral protection. This study primarily investigated the effects of SalB on sepsis.
The model of sepsis via caecal ligation puncture (CLP) was established in male C57BL/6 mice. Therapeutic effects of SalB on hepatic and pulmonary injury, inflammatory responses and microcirculatory disturbances in sepsis were evaluated. Platelet aggregation and adhesion were measured via flow cytometry and an adhesion test. After overexpression of platelet‐related activating molecules by 293T cells, the efficient binding of SalB and platelet CD226 molecules was further evaluated. Finally, neutralizing antibody experiments were used to assess the mechanism of SalB in alleviating the progression of sepsis.
SalB mitigated hepatic and pulmonary impairments, reduced inflammatory cytokine levels and enhanced mesenteric microvascular blood flow in septic mice. SalB enhanced CLP‐induced reduction of platelet count and platelet pressure cumulative volume. SalB reduced platelet adhesion to endothelial cells and platelet aggregation to leukocytes. A high binding efficiency was observed between SalB and the platelet adhesion molecule CD226. Ex vivo, interactions between SalB and platelets from CD226‐knockout mice were markedly decreased. In vivo administration of CD226 neutralizing antibodies significantly delayed disease progression and enhanced mesenteric microcirculation in septic mice.