1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Salvianolic acid B improves the microcirculation in a mouse model of sepsis through a mechanism involving the platelet receptor CD226

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and Purpose

          Salvianolic acid B (SalB) demonstrates diverse clinical applications, particularly in cardiovascular and cerebral protection. This study primarily investigated the effects of SalB on sepsis.

          Experimental Approach

          The model of sepsis via caecal ligation puncture (CLP) was established in male C57BL/6 mice. Therapeutic effects of SalB on hepatic and pulmonary injury, inflammatory responses and microcirculatory disturbances in sepsis were evaluated. Platelet aggregation and adhesion were measured via flow cytometry and an adhesion test. After overexpression of platelet‐related activating molecules by 293T cells, the efficient binding of SalB and platelet CD226 molecules was further evaluated. Finally, neutralizing antibody experiments were used to assess the mechanism of SalB in alleviating the progression of sepsis.

          Key Results

          SalB mitigated hepatic and pulmonary impairments, reduced inflammatory cytokine levels and enhanced mesenteric microvascular blood flow in septic mice. SalB enhanced CLP‐induced reduction of platelet count and platelet pressure cumulative volume. SalB reduced platelet adhesion to endothelial cells and platelet aggregation to leukocytes. A high binding efficiency was observed between SalB and the platelet adhesion molecule CD226. Ex vivo, interactions between SalB and platelets from CD226‐knockout mice were markedly decreased. In vivo administration of CD226 neutralizing antibodies significantly delayed disease progression and enhanced mesenteric microcirculation in septic mice.

          Conclusion and Implications

          In our murine model of sepsis, treatment with SalB improved the microcirculatory disturbance and hindered the progression of sepsis by inhibiting platelet CD226 function. Our results suggest SalB is a promising therapeutic approach to the treatment of sepsis.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research

          Reproducible science requires transparent reporting. The ARRIVE guidelines (Animal Research: Reporting of In Vivo Experiments) were originally developed in 2010 to improve the reporting of animal research. They consist of a checklist of information to include in publications describing in vivo experiments to enable others to scrutinise the work adequately, evaluate its methodological rigour, and reproduce the methods and results. Despite considerable levels of endorsement by funders and journals over the years, adherence to the guidelines has been inconsistent, and the anticipated improvements in the quality of reporting in animal research publications have not been achieved. Here, we introduce ARRIVE 2.0. The guidelines have been updated and information reorganised to facilitate their use in practice. We used a Delphi exercise to prioritise and divide the items of the guidelines into 2 sets, the “ARRIVE Essential 10,” which constitutes the minimum requirement, and the “Recommended Set,” which describes the research context. This division facilitates improved reporting of animal research by supporting a stepwise approach to implementation. This helps journal editors and reviewers verify that the most important items are being reported in manuscripts. We have also developed the accompanying Explanation and Elaboration (E&E) document, which serves (1) to explain the rationale behind each item in the guidelines, (2) to clarify key concepts, and (3) to provide illustrative examples. We aim, through these changes, to help ensure that researchers, reviewers, and journal editors are better equipped to improve the rigour and transparency of the scientific process and thus reproducibility.
            • Record: found
            • Abstract: found
            • Article: not found

            The immunopathology of sepsis and potential therapeutic targets

            Sepsis — which is caused by a dysregulated host response to infection — is a life-threatening organ dysfunction. This Review describes the recent advances in our understanding of sepsis pathogenesis and discusses strategies for the development of successful therapies.
              • Record: found
              • Abstract: found
              • Article: not found

              Immunodesign of experimental sepsis by cecal ligation and puncture.

              Sepsis remains a prevalent clinical challenge and the underlying pathophysiology is still poorly understood. To investigate the complex molecular mechanisms of sepsis, various animal models have been developed, the most frequently used being the cecal ligation and puncture (CLP) model in rodents. In this model, sepsis originates from a polymicrobial infectious focus within the abdominal cavity, followed by bacterial translocation into the blood compartment, which then triggers a systemic inflammatory response. A requirement of this model is that it is performed with high consistency to obtain reproducible results. Evidence is now emerging that the accompanying inflammatory response varies with the severity grade of sepsis, which is highly dependent on the extent of cecal ligation. In this protocol, we define standardized procedures for inducing sepsis in mice and rats by applying defined severity grades of sepsis through modulation of the position of cecal ligation. The CLP procedure can be performed in as little as 10 min for each animal by an experienced user, with additional time required for subsequent postoperative care and data collection.

                Author and article information

                Journal
                British Journal of Pharmacology
                British J Pharmacology
                Wiley
                0007-1188
                1476-5381
                February 2025
                October 23 2024
                February 2025
                : 182
                : 4
                : 988-1004
                Affiliations
                [1 ] Department of Immunology Fourth Military Medical University Xi'an Shaanxi China
                [2 ] College of Life Sciences Northwest University Xi'an Shaanxi China
                [3 ] Department of Emergency Xijing Hospital, Fourth Military Medical University Xi'an Shaanxi China
                [4 ] Institute of Medical Research Northwestern Polytechnical University Xi'an Shaanxi China
                Article
                10.1111/bph.17371
                39443080
                220e3e1a-74c7-4823-aa8c-29c09167c4e5
                © 2025

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article

                Related Documents Log