6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pharmacogenomics of Novel Direct Oral Anticoagulants: Newly Identified Genes and Genetic Variants

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Direct oral anticoagulants (DOAC) have shown an upward prescribing trend in recent years due to favorable pharmacokinetics and pharmacodynamics without requirement for routine coagulation monitoring. However, recent studies have documented inter-individual variability in plasma drug levels of DOACs. Pharmacogenomics of DOACs is a relatively new area of research. There is a need to understand the role of pharmacogenomics in the interpatient variability of the four most commonly prescribed DOACs, namely dabigatran, rivaroxaban, apixaban, and edoxaban. We performed an extensive search of recently published research articles including clinical trials and in-vitro studies in PubMed, particularly those focusing on genetic loci, single nucleotide polymorphisms (SNPs), and DNA polymorphisms, and their effect on inter-individual variation of DOACs. Additionally, we also focused on commonly associated drug-drug interactions of DOACs. CES1 and ABCB1 SNPs are the most common documented genetic variants that contribute to alteration in peak and trough levels of dabigatran with demonstrated clinical impact. ABCB1 SNPs are implicated in alteration of plasma drug levels of rivaroxaban and apixaban. Studies conducted with factor Xa, ABCB1, SLCOB1, CYP2C9, and VKORC1 genetic variants did not reveal any significant association with plasma drug levels of edoxaban. Pharmacokinetic drug-drug interactions of dabigatran are mainly mediated by p-glycoprotein. Strong inhibitors and inducers of CYP3A4 and p-glycoprotein should be avoided in patients treated with rivaroxaban, apixaban, and edoxaban. We conclude that some of the inter-individual variability of DOACs can be attributed to alteration of genetic variants of gene loci and drug-drug interactions. Future research should be focused on exploring new genetic variants, their effect, and molecular mechanisms that contribute to alteration of plasma levels of DOACs.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: not found
          • Article: not found

          CPIC: Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research Network.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The effect of dabigatran plasma concentrations and patient characteristics on the frequency of ischemic stroke and major bleeding in atrial fibrillation patients: the RE-LY Trial (Randomized Evaluation of Long-Term Anticoagulation Therapy).

            The goal of this study was to analyze the impact of dabigatran plasma concentrations, patient demographics, and aspirin (ASA) use on frequencies of ischemic strokes/systemic emboli and major bleeds in atrial fibrillation patients. The efficacy and safety of dabigatran etexilate were demonstrated in the RE-LY (Randomized Evaluation of Long-Term Anticoagulation Therapy) trial, but a therapeutic concentration range has not been defined. In a pre-specified analysis of RE-LY, plasma concentrations of dabigatran were determined in patients treated with dabigatran etexilate 110 mg twice daily (bid) or 150 mg bid and correlated with the clinical outcomes of ischemic stroke/systemic embolism and major bleeding using univariate and multivariate logistic regression and Cox regression models. Patient demographics and ASA use were assessed descriptively and as covariates. Plasma concentrations were obtained from 9,183 patients, with 112 ischemic strokes/systemic emboli (1.3%) and 323 major bleeds (3.8%) recorded. Dabigatran levels were dependent on renal function, age, weight, and female sex, but not ethnicity, geographic region, ASA use, or clopidogrel use. A multiple logistic regression model (c-statistic 0.657, 95% confidence interval [CI]: 0.61 to 0.71) showed that the risk of ischemic events was inversely related to trough dabigatran concentrations (p = 0.045), with age and previous stroke (both p < 0.0001) as significant covariates. Multiple logistic regression (c-statistic 0.715, 95% CI: 0.69 to 0.74) showed major bleeding risk increased with dabigatran exposure (p < 0.0001), age (p < 0.0001), ASA use (p < 0.0003), and diabetes (p = 0.018) as significant covariates. Ischemic stroke and bleeding outcomes were correlated with dabigatran plasma concentrations. Age was the most important covariate. Individual benefit-risk might be improved by tailoring dabigatran dose after considering selected patient characteristics. (Randomized Evaluation of Long Term Anticoagulant Therapy [RE-LY] With Dabigatran Etexilate; NCT00262600). Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clinical Pharmacokinetic and Pharmacodynamic Profile of Rivaroxaban

              Rivaroxaban is an oral, direct Factor Xa inhibitor that targets free and clot-bound Factor Xa and Factor Xa in the prothrombinase complex. It is absorbed rapidly, with maximum plasma concentrations being reached 2–4 h after tablet intake. Oral bioavailability is high (80–100 %) for the 10 mg tablet irrespective of food intake and for the 15 mg and 20 mg tablets when taken with food. Variability in the pharmacokinetic parameters is moderate (coefficient of variation 30–40 %). The pharmacokinetic profile of rivaroxaban is consistent in healthy subjects and across a broad range of different patient populations studied. Elimination of rivaroxaban from plasma occurs with a terminal half-life of 5–9 h in healthy young subjects and 11–13 h in elderly subjects. Rivaroxaban produces a pharmacodynamic effect that is closely correlated with its plasma concentration. The pharmacokinetic and pharmacodynamic relationship for inhibition of Factor Xa activity can be described by an E max model, and prothrombin time prolongation by a linear model. Rivaroxaban does not inhibit cytochrome P450 enzymes or known drug transporter systems and, because rivaroxaban has multiple elimination pathways, it has no clinically relevant interactions with most commonly prescribed medications. Rivaroxaban has been approved for clinical use in several thromboembolic disorders.
                Bookmark

                Author and article information

                Journal
                J Pers Med
                J Pers Med
                jpm
                Journal of Personalized Medicine
                MDPI
                2075-4426
                17 January 2019
                March 2019
                : 9
                : 1
                : 7
                Affiliations
                [1 ]Department of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; srikanur@ 123456iu.edu
                [2 ]Department of Medicine, Krannert Institute of Cardiology, Indiana University School of Medicine, 1800 N. Capitol Ave, MPC2, ME-400, Indianapolis, IN 46202, USA
                Author notes
                [* ]Correspondence: rkreutz@ 123456iu.edu
                Author information
                https://orcid.org/0000-0002-2110-607X
                Article
                jpm-09-00007
                10.3390/jpm9010007
                6463033
                30658513
                22174f87-95d8-473c-8e38-d9598bc0e060
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 29 October 2018
                : 11 January 2019
                Categories
                Review

                direct oral anticoagulant,dabigatran,rivaroxaban,apixaban,edoxaban,pharmacogenomics,genetic variants,snps,gene-drug interactions,genome guided therapy

                Comments

                Comment on this article