2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      HSP70 inhibits high glucose-induced Smad3 activation and attenuates epithelial-to-mesenchymal transition of peritoneal mesothelial cells

      , , , ,
      Molecular Medicine Reports
      Spandidos Publications

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Hsp70 chaperones: Cellular functions and molecular mechanism

          Abstract. Hsp70 proteins are central components of the cellular network of molecular chaperones and folding catalysts. They assist a large variety of protein folding processes in the cell by transient association of their substrate binding domain with short hydrophobic peptide segments within their substrate proteins. The substrate binding and release cycle is driven by the switching of Hsp70 between the low-affinity ATP bound state and the high-affinity ADP bound state. Thus, ATP binding and hydrolysis are essential in vitro and in vivo for the chaperone activity of Hsp70 proteins. This ATPase cycle is controlled by co-chaperones of the family of J-domain proteins, which target Hsp70s to their substrates, and by nucleotide exchange factors, which determine the lifetime of the Hsp70-substrate complex. Additional co-chaperones fine-tune this chaperone cycle. For specific tasks the Hsp70 cycle is coupled to the action of other chaperones, such as Hsp90 and Hsp100.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells.

            Epithelial-mesenchymal transition (EMT) plays an important role in renal tubulointerstitial fibrosis and TGF-beta1 is the key inducer of EMT. Phosphorylation of Smad proteins and/or mitogen-activated protein kinases (MAPK) is required for TGF-beta1-induced EMT. Because reactive oxygen species (ROS) are involved in TGF-beta1 signaling and are upstream signaling molecules to MAPK, this study examined the role of ROS in TGF-beta1-induced MAPK activation and EMT in rat proximal tubular epithelial cells. Growth-arrested and synchronized NRK-52E cells were stimulated with TGF-beta1 (0.2 to 20 ng/ml) or H(2)O(2) (1 to 500 microM) in the presence or absence of antioxidants (N-acetylcysteine or catalase), inhibitors of NADPH oxidase (diphenyleneiodonium and apocynin), mitochondrial electron transfer chain subunit I (rotenone), and MAPK (PD 98059, an MEK [MAP kinase/ERK kinase] inhibitor, or p38 MAPK inhibitor) for up to 96 h. TGF-beta1 increased dichlorofluorescein-sensitive cellular ROS, phosphorylated Smad 2, p38 MAPK, extracellular signal-regulated kinases (ERK)1/2, alpha-smooth muscle actin (alpha-SMA) expression, and fibronectin secretion and decreased E-cadherin expression. Antioxidants effectively inhibited TGF-beta1-induced cellular ROS, phosphorylation of Smad 2, p38 MAPK, and ERK, and EMT. H(2)O(2) reproduced all of the effects of TGF-beta1 with the exception of Smad 2 phosphorylation. Chemical inhibition of ERK but not p38 MAPK inhibited TGF-beta1-induced Smad 2 phosphorylation, and both MAPK inhibitors inhibited TGF-beta1- and H(2)O(2)-induced EMT. Diphenyleneiodonium, apocynin, and rotenone also significantly inhibited TGF-beta1-induced ROS. Thus, this data suggest that ROS play an important role in TGF-beta1-induced EMT primarily through activation of MAPK and subsequently through ERK-directed activation of Smad pathway in proximal tubular epithelial cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transient overexpression of TGF-{beta}1 induces epithelial mesenchymal transition in the rodent peritoneum.

              Epithelial mesenchymal transition (EMT), a process involved in many growth and repair functions, has been identified in the peritoneal tissues of patients who undergo peritoneal dialysis. The sequence of changes in gene regulation and cellular events associated with EMT after TGF-beta1-induced peritoneal fibrosis is reported. Sprague-Dawley rats received an intraperitoneal injection of an adenovirus vector that transfers active TGF-beta1 (AdTGF-beta1) or control adenovirus, AdDL. Animals were killed 0 to 21 days after infection. Peritoneal effluent and tissue were analyzed for markers of EMT. In the animals that were treated with AdTGF-beta1, an increase in expression of genes associated with EMT and fibrosis, such as type I collagen A2, alpha-smooth muscle actin, and the zinc finger regulatory protein Snail, was identified. Transition of mesothelial cells 4 to 7 d after infection, with appearance of epithelial cells in the submesothelial zone 7 to 14 d after exposure to AdTGF-beta1, was demonstrated. This phase was associated with disruption of the basement membrane and increased expression of matrix metalloproteinase 2. By 14 to 21 d after infection, there was evidence of restoration of normal submesothelial architecture. These findings suggest that EMT occurs in vivo after TGF-beta1 overexpression in the peritoneum. Cellular changes and gene regulation associated with EMT are evident throughout the fibrogenic process and are not limited to early time points. This further supports the central role of TGF-beta1 in peritoneal fibrosis and provides an important model to study the sequence of events involved in TGF-beta1-induced EMT.
                Bookmark

                Author and article information

                Journal
                Molecular Medicine Reports
                Spandidos Publications
                1791-2997
                1791-3004
                August 2014
                May 28 2014
                May 28 2014
                August 2014
                May 28 2014
                May 28 2014
                : 10
                : 2
                : 1089-1095
                Article
                10.3892/mmr.2014.2279
                24890460
                22235a48-4c17-481e-8651-c69779fc3d73
                © 2014
                History

                Comments

                Comment on this article