+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gcg-XTEN: An Improved Glucagon Capable of Preventing Hypoglycemia without Increasing Baseline Blood Glucose

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          While the majority of current diabetes treatments focus on reducing blood glucose levels, hypoglycemia represents a significant risk associated with insulin treatment. Glucagon plays a major regulatory role in controlling hypoglycemia in vivo, but its short half-life and hyperglycemic effects prevent its therapeutic use for non-acute applications. The goal of this study was to identify a modified form of glucagon suitable for prophylactic treatment of hypoglycemia without increasing baseline blood glucose levels.

          Methodology/Principal Findings

          Through application of the XTEN technology, we report the construction of a glucagon fusion protein with an extended exposure profile (Gcg-XTEN). The in vivo half-life of the construct was tuned to support nightly dosing through design and testing in cynomolgus monkeys. Efficacy of the construct was assessed in beagle dogs using an insulin challenge to induce hypoglycemia. Dose ranging of Gcg-XTEN in fasted beagle dogs demonstrated that the compound was biologically active with a pharmacodynamic profile consistent with the designed half-life. Prophylactic administration of 0.6 nmol/kg Gcg-XTEN to dogs conferred resistance to a hypoglycemic challenge at 6 hours post-dose without affecting baseline blood glucose levels. Consistent with the designed pharmacokinetic profile, hypoglycemia resistance was not observed at 12 hours post-dose. Importantly, the solubility and stability of the glucagon peptide were also significantly improved by fusion to XTEN.


          The data show that Gcg-XTEN is effective in preventing hypoglycemia without the associated hyperglycemia expected for unmodified glucagon. While the plasma clearance of this Gcg-XTEN has been optimized for overnight dosing, specifically for the treatment of nocturnal hypoglycemia, constructs with significantly longer exposure profiles are feasible. Such constructs may have multiple applications such as allowing for more aggressive insulin treatment regimens, treating hypoglycemia due to insulin-secreting tumors, providing synergistic efficacy in combination therapies with long-acting GLP1 analogs, and as an appetite suppressant for treatment of obesity. The improved physical properties of the Gcg-XTEN molecule may also allow for novel delivery systems not currently possible with native glucagon.

          Related collections

          Most cited references 19

          • Record: found
          • Abstract: found
          • Article: not found

          Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study.

          To determine the relation between exposure to glycaemia over time and the risk of macrovascular or microvascular complications in patients with type 2 diabetes. Prospective observational study. 23 hospital based clinics in England, Scotland, and Northern Ireland. 4585 white, Asian Indian, and Afro-Caribbean UKPDS patients, whether randomised or not to treatment, were included in analyses of incidence; of these, 3642 were included in analyses of relative risk. Primary predefined aggregate clinical outcomes: any end point or deaths related to diabetes and all cause mortality. Secondary aggregate outcomes: myocardial infarction, stroke, amputation (including death from peripheral vascular disease), and microvascular disease (predominantly retinal photo-coagulation). Single end points: non-fatal heart failure and cataract extraction. Risk reduction associated with a 1% reduction in updated mean HbA(1c) adjusted for possible confounders at diagnosis of diabetes. The incidence of clinical complications was significantly associated with glycaemia. Each 1% reduction in updated mean HbA(1c) was associated with reductions in risk of 21% for any end point related to diabetes (95% confidence interval 17% to 24%, P<0.0001), 21% for deaths related to diabetes (15% to 27%, P<0.0001), 14% for myocardial infarction (8% to 21%, P<0.0001), and 37% for microvascular complications (33% to 41%, P<0.0001). No threshold of risk was observed for any end point. In patients with type 2 diabetes the risk of diabetic complications was strongly associated with previous hyperglycaemia. Any reduction in HbA(1c) is likely to reduce the risk of complications, with the lowest risk being in those with HbA(1c) values in the normal range (<6.0%).
            • Record: found
            • Abstract: not found
            • Article: not found

            Standards of medical care in diabetes--2008.

              • Record: found
              • Abstract: found
              • Article: not found

              The role of gut hormones in glucose homeostasis.

              The gastrointestinal tract has a crucial role in the control of energy homeostasis through its role in the digestion, absorption, and assimilation of ingested nutrients. Furthermore, signals from the gastrointestinal tract are important regulators of gut motility and satiety, both of which have implications for the long-term control of body weight. Among the specialized cell types in the gastrointestinal mucosa, enteroendocrine cells have important roles in regulating energy intake and glucose homeostasis through their actions on peripheral target organs, including the endocrine pancreas. This article reviews the biological actions of gut hormones regulating glucose homeostasis, with an emphasis on mechanisms of action and the emerging therapeutic roles of gut hormones for the treatment of type 2 diabetes mellitus.

                Author and article information

                Role: Editor
                PLoS One
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                14 April 2010
                : 5
                : 4
                [1 ]Amunix, Inc., Mountain View, California, United States of America
                [2 ]Versartis, Inc., Mountain View, California, United States of America
                Pennington Biomedical Research Center/LSU, United States of America
                Author notes

                Conceived and designed the experiments: NCG MDS CWW YY VS JLC WPCS JS. Performed the experiments: NCG WT MDS CWW YY YY. Analyzed the data: NCG BJS VS JLC JS. Wrote the paper: NCG VS WPCS JS.

                Geething et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                Page count
                Pages: 11
                Research Article
                Diabetes and Endocrinology/Obesity
                Diabetes and Endocrinology/Type 1 Diabetes



                Comment on this article