31
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Insights into the Adsorption Properties of Mixed Matrix Membranes (Pebax 1657- g-Chitosan-PVDF-Bovine Serum Albumin@ZIF-CO 3-1) for the Antiviral COVID-19 Treatment Drugs Remdesivir and Nirmatrelvir: An In Silico Study

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="first" dir="auto" id="d2773192e93">The effect of the COVID-19 pandemic on the accumulation of environmental pollutants has been significant. In that way, waste management systems have faced problems, and the amount of hazardous and medical wastes has increased. As pharmaceuticals associated with the treatment of COVID-19 enter the environment, aquatic and terrestrial ecosystems have been negatively impacted, potentially disrupting natural processes and harming aquatic life. This analysis seeks to appraise the potential of mixed matrix membranes (MMMs) composed of Pebax 1657-g-chitosan-polyvinylidene fluoride (PEX-g-CHS-PVDF)-bovine serum albumin (BSA)@ZIF-CO3-1 as adsorbents for removing remdesivir (REMD) and nirmatrelvir (NIRM) from aqueous environments. An in silico study was conducted to explore the adsorption characteristics, physicochemical properties, and structural features of these MMMs, employing quantum mechanical (QM) calculations, molecular dynamics (MD) simulations, and Monte Carlo (MC) simulations as research methodologies. Incorporating BSA@ZIF-CO3-1 into the PEX-g-CHS-PVDF polymer matrix improved the physicochemical properties of MMMs by promoting the compatibility and interfacial adhesion between the two materials, facilitated by electrostatic interactions, van der Waals forces, and hydrogen bonding. Investigation of the interaction mechanism between the title pharmaceutical pollutants and the surfaces of MMMs, along with the description of their adsorption behavior, was also conducted by applying MD and MC approaches. Our observations indicate that the adsorption behavior of REMD and NIRM is influenced by molecular size, shape, and the presence of functional groups. Molecular simulation analysis demonstrated that the MMM membrane is a highly suitable adsorbent for the adsorption of REMD and NIRM drugs, with a higher affinity toward REMD adsorption. Our study emphasizes the significance of computational modeling in developing practical strategies for eliminating COVID-19 drug contaminants from wastewater. The knowledge obtained through our molecular simulations and QM calculations can assist in creating more efficient adsorption materials, resulting in a cleaner and healthier environment. </p>

          Related collections

          Most cited references132

          • Record: found
          • Abstract: not found
          • Article: not found

          Density-functional thermochemistry. III. The role of exact exchange

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Avogadro: an advanced semantic chemical editor, visualization, and analysis platform

            Background The Avogadro project has developed an advanced molecule editor and visualizer designed for cross-platform use in computational chemistry, molecular modeling, bioinformatics, materials science, and related areas. It offers flexible, high quality rendering, and a powerful plugin architecture. Typical uses include building molecular structures, formatting input files, and analyzing output of a wide variety of computational chemistry packages. By using the CML file format as its native document type, Avogadro seeks to enhance the semantic accessibility of chemical data types. Results The work presented here details the Avogadro library, which is a framework providing a code library and application programming interface (API) with three-dimensional visualization capabilities; and has direct applications to research and education in the fields of chemistry, physics, materials science, and biology. The Avogadro application provides a rich graphical interface using dynamically loaded plugins through the library itself. The application and library can each be extended by implementing a plugin module in C++ or Python to explore different visualization techniques, build/manipulate molecular structures, and interact with other programs. We describe some example extensions, one which uses a genetic algorithm to find stable crystal structures, and one which interfaces with the PackMol program to create packed, solvated structures for molecular dynamics simulations. The 1.0 release series of Avogadro is the main focus of the results discussed here. Conclusions Avogadro offers a semantic chemical builder and platform for visualization and analysis. For users, it offers an easy-to-use builder, integrated support for downloading from common databases such as PubChem and the Protein Data Bank, extracting chemical data from a wide variety of formats, including computational chemistry output, and native, semantic support for the CML file format. For developers, it can be easily extended via a powerful plugin mechanism to support new features in organic chemistry, inorganic complexes, drug design, materials, biomolecules, and simulations. Avogadro is freely available under an open-source license from http://avogadro.openmolecules.net.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Remdesivir: A Review of Its Discovery and Development Leading to Emergency Use Authorization for Treatment of COVID-19

              The global pandemic of SARS-CoV-2, the causative viral pathogen of COVID-19, has driven the biomedical community to action—to uncover and develop antiviral interventions. One potential therapeutic approach currently being evaluated in numerous clinical trials is the agent remdesivir, which has endured a long and winding developmental path. Remdesivir is a nucleotide analogue prodrug that perturbs viral replication, originally evaluated in clinical trials to thwart the Ebola outbreak in 2014. Subsequent evaluation by numerous virology laboratories demonstrated the ability of remdesivir to inhibit coronavirus replication, including SARS-CoV-2. Here, we provide an overview of remdesivir’s discovery, mechanism of action, and the current studies exploring its clinical effectiveness.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                ACS Applied Materials & Interfaces
                ACS Appl. Mater. Interfaces
                American Chemical Society (ACS)
                1944-8244
                1944-8252
                July 05 2023
                June 21 2023
                July 05 2023
                : 15
                : 26
                : 31185-31205
                Affiliations
                [1 ]Department of Polymer Processing, Iran Polymer and Petrochemical Institute, 14975-112 Tehran, Iran
                Article
                10.1021/acsami.3c03943
                37343042
                222f0770-cb1e-4bb8-bc52-418cb0f55ee2
                © 2023

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-045

                History

                Comments

                Comment on this article