34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Robust spinal neuroinflammation mediates mechanical allodynia in Walker 256 induced bone cancer rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It has been reported that remarkable and sustained activation of astrocytes and/or microglia occurs in cancer induced pain (CIP), which is different from neuropathic and inflammatory pain. The present study was designed to investigate the role of spinal Toll-like receptor 4 (TLR4) induced glial neuroinflammation in cancer induced pain using a modified rat model of bone cancer. The rat model of CIP consisted of unilateral intra-tibial injection with Walker 256 mammary gland carcinoma. Nine days after Walker 256 inoculation, a robust activation of both astrocytes and microglia in bilateral spinal dorsal horn was observed together with significant bilateral mechanical allodynia. This neuroinflammation was characterized by enhanced immunostaining of both glial fibrillary acidic protein (GFAP, astrocyte marker) and OX-42 (microglia marker), and an elevated level of IL-1β, IL-6 and TNF-α mRNA. I.t. administration of fluorocitrate (an inhibitor of glial metabolism, 1 nmol) or minocycline (an inhibitor of microglia, 100 μg) has significant anti-allodynic effects on day 12 after Walker 256 inoculation. Naloxone (a nonstereoselective TLR4 signaling blocker, 60 μg, i.t.) also significantly alleviated mechanical allodynia and simultaneously blocked the increased inflammatory cytokine mRNA. The results suggested that spinal TLR4 might play an important role in the sustained glial activation that critically contributed to the robust and sustained spinal neuroinflammation in CIP. This result could potentially help clinicians and researchers to better understand the mechanism of complicated cancer pain.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: not found
          • Article: not found

          Ethical guidelines for investigations of experimental pain in conscious animals.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia.

            A method to measure cutaneous hyperalgesia to thermal stimulation in unrestrained animals is described. The testing paradigm uses an automated detection of the behavioral end-point; repeated testing does not contribute to the development of the observed hyperalgesia. Carrageenan-induced inflammation resulted in significantly shorter paw withdrawal latencies as compared to saline-treated paws and these latency changes corresponded to a decreased thermal nociceptive threshold. Both the thermal method and the Randall-Selitto mechanical method detected dose-related hyperalgesia and its blockade by either morphine or indomethacin. However, the thermal method showed greater bioassay sensitivity and allowed for the measurement of other behavioral parameters in addition to the nociceptive threshold.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Glial activation: a driving force for pathological pain.

              Pain is classically viewed as being mediated solely by neurons, as are other sensory phenomena. The discovery that spinal cord glia (microglia and astrocytes) amplify pain requires a change in this view. These glia express characteristics in common with immune cells in that they respond to viruses and bacteria, releasing proinflammatory cytokines, which create pathological pain. These spinal cord glia also become activated by certain sensory signals arriving from the periphery. Similar to spinal infection, these signals cause release of proinflammatory cytokines, thus creating pathological pain. Taken together, these findings suggest a new, dramatically different approach to pain control, as all clinical therapies are focused exclusively on altering neuronal, rather than glial, function.
                Bookmark

                Author and article information

                Journal
                Mol Brain
                Mol Brain
                Molecular Brain
                BioMed Central
                1756-6606
                2012
                20 May 2012
                : 5
                : 16
                Affiliations
                [1 ]Department of Integrative Medicine and Neurobiology, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
                Article
                1756-6606-5-16
                10.1186/1756-6606-5-16
                3443428
                22607655
                2234904d-2968-44cb-a3c8-e74737442fd4
                Copyright ©2012 Mao-Ying et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 March 2012
                : 2 May 2012
                Categories
                Research

                Neurosciences
                toll-like receptor 4,cancer induced pain,glial activation,rat,neuroinflammation
                Neurosciences
                toll-like receptor 4, cancer induced pain, glial activation, rat, neuroinflammation

                Comments

                Comment on this article