41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      CAR-Associated Vesicular Transport of an Adenovirus in Motor Neuron Axons

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Axonal transport is responsible for the movement of signals and cargo between nerve termini and cell bodies. Pathogens also exploit this pathway to enter and exit the central nervous system. In this study, we characterised the binding, endocytosis and axonal transport of an adenovirus (CAV-2) that preferentially infects neurons. Using biochemical, cell biology, genetic, ultrastructural and live-cell imaging approaches, we show that interaction with the neuronal membrane correlates with coxsackievirus and adenovirus receptor (CAR) surface expression, followed by endocytosis involving clathrin. In axons, long-range CAV-2 motility was bidirectional with a bias for retrograde transport in nonacidic Rab7-positive organelles. Unexpectedly, we found that CAR was associated with CAV-2 vesicles that also transported cargo as functionally distinct as tetanus toxin, neurotrophins, and their receptors. These results suggest that a single axonal transport carrier is capable of transporting functionally distinct cargoes that target different membrane compartments in the soma. We propose that CAV-2 transport is dictated by an innate trafficking of CAR, suggesting an unsuspected function for this adhesion protein during neuronal homeostasis.

          Author Summary

          Adenoviruses commonly cause subclinical morbidity in the ocular, respiratory, and gastrointestinal tracts, and less frequently, adenovirus-induced disease can be fatal for newborns and immunocompromised hosts. In addition, adenoviruses can reach the central nervous system (CNS) and cause associated encephalitis and tumours. On the flip side, during the last two decades, adenovirus vectors have become powerful tools to treat and address diseases of the CNS. Despite the fact that axonal transport of adenoviruses was reported more than 15 years ago, nothing was known concerning how adenoviruses access the CNS. The characterization of their interactions with brain cells was therefore long overdue. In this study, we describe the axonal trafficking of an adenovirus that preferentially infects neurons and reaches the CNS through long-range axonal transport. We show that this adenovirus exploits an endogenous vesicular pathway used by the adhesion molecule CAR (coxsackievirus and adenovirus receptor). Our study characterizes this endogenous route of access, which is likely to be crucial to neuronal survival, neurodegenerative diseases, gene transfer vectors, and adenovirus-induced morbidity.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5.

          A complementary DNA clone has been isolated that encodes a coxsackievirus and adenovirus receptor (CAR). When transfected with CAR complementary DNA, nonpermissive hamster cells became susceptible to coxsackie B virus attachment and infection. Furthermore, consistent with previous studies demonstrating that adenovirus infection depends on attachment of a viral fiber to the target cell, CAR-transfected hamster cells bound adenovirus in a fiber-dependent fashion and showed a 100-fold increase in susceptibility to virus-mediated gene transfer. Identification of CAR as a receptor for these two unrelated and structurally distinct viral pathogens is important for understanding viral pathogenesis and has implications for therapeutic gene delivery with adenovirus vectors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Activation of endosomal dynein motors by stepwise assembly of Rab7–RILP–p150Glued, ORP1L, and the receptor βlll spectrin

            The small GTPase Rab7 controls late endocytic transport by the minus end–directed motor protein complex dynein–dynactin, but how it does this is unclear. Rab7-interacting lysosomal protein (RILP) and oxysterol-binding protein–related protein 1L (ORP1L) are two effectors of Rab7. We show that GTP-bound Rab7 simultaneously binds RILP and ORP1L to form a RILP–Rab7–ORP1L complex. RILP interacts directly with the C-terminal 25-kD region of the dynactin projecting arm p150Glued, which is required for dynein motor recruitment to late endocytic compartments (LEs). Still, p150Glued recruitment by Rab7–RILP does not suffice to induce dynein-driven minus-end transport of LEs. ORP1L, as well as βIII spectrin, which is the general receptor for dynactin on vesicles, are essential for dynein motor activity. Our results illustrate that the assembly of microtubule motors on endosomes involves a cascade of linked events. First, Rab7 recruits two effectors, RILP and ORP1L, to form a tripartite complex. Next, RILP directly binds to the p150Glued dynactin subunit to recruit the dynein motor. Finally, the specific dynein motor receptor Rab7–RILP is transferred by ORP1L to βIII spectrin. Dynein will initiate translocation of late endosomes to microtubule minus ends only after interacting with βIII spectrin, which requires the activities of Rab7–RILP and ORP1L.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rab5 and Rab7 control endocytic sorting along the axonal retrograde transport pathway.

              Vesicular pathways coupling the neuromuscular junction with the motor neuron soma are essential for neuronal function and survival. To characterize the organelles responsible for this long-distance crosstalk, we developed a purification strategy based on a fragment of tetanus neurotoxin (TeNT H(C)) conjugated to paramagnetic beads. This approach enabled us to identify, among other factors, the small GTPase Rab7 as a functional marker of a specific pool of axonal retrograde carriers, which transport neurotrophins and their receptors. Furthermore, Rab5 is essential for an early step in TeNT H(C) sorting but is absent from axonally transported vesicles. Our data demonstrate that TeNT H(C) uses a retrograde transport pathway shared with p75(NTR), TrkB, and BDNF, which is strictly dependent on the activities of both Rab5 and Rab7. Therefore, Rab7 plays an essential role in axonal retrograde transport by controlling a vesicular compartment implicated in neurotrophin traffic.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                May 2009
                May 2009
                22 May 2009
                : 5
                : 5
                : e1000442
                Affiliations
                [1 ]Molecular NeuroPathobiology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
                [2 ]Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, Montpellier, France
                [3 ]Universités de Montpellier I & II, Montpellier, France
                [4 ]Electron Microscopy Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
                University of Michigan Medical School, United States of America
                Author notes
                [¤]

                Current address: Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, Montpellier, France

                Conceived and designed the experiments: SS GS EJK. Performed the experiments: SS LGB DH AEW AK. Analyzed the data: SS LGB AEW GS EJK. Contributed reagents/materials/analysis tools: EJK. Wrote the paper: SS GS EJK.

                Article
                09-PLPA-RA-0010R2
                10.1371/journal.ppat.1000442
                2677547
                19461877
                2243646f-f8d0-4f02-8e81-3a906daa5f69
                Salinas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 6 January 2009
                : 24 April 2009
                Page count
                Pages: 16
                Categories
                Research Article
                Cell Biology/Cytoskeleton
                Cell Biology/Membranes and Sorting
                Cell Biology/Neuronal and Glial Cell Biology
                Microbiology/Cellular Microbiology and Pathogenesis
                Neurological Disorders/Infectious Diseases of the Nervous System
                Virology/Host Invasion and Cell Entry

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article