27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Pacing and Decision Making in Sport and Exercise: The Roles of Perception and Action in the Regulation of Exercise Intensity

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In pursuit of optimal performance, athletes and physical exercisers alike have to make decisions about how and when to invest their energy. The process of pacing has been associated with the goal-directed regulation of exercise intensity across an exercise bout. The current review explores divergent views on understanding underlying mechanisms of decision making in pacing. Current pacing literature provides a wide range of aspects that might be involved in the determination of an athlete's pacing strategy, but lacks in explaining how perception and action are coupled in establishing behaviour. In contrast, decision-making literature rooted in the understanding that perception and action are coupled provides refreshing perspectives on explaining the mechanisms that underlie natural interactive behaviour. Contrary to the assumption of behaviour that is managed by a higher-order governor that passively constructs internal representations of the world, an ecological approach is considered. According to this approach, knowledge is rooted in the direct experience of meaningful environmental objects and events in individual environmental processes. To assist a neuropsychological explanation of decision making in exercise regulation, the relevance of the affordance competition hypothesis is explored. By considering pacing as a behavioural expression of continuous decision making, new insights on underlying mechanisms in pacing and optimal performance can be developed.

          Related collections

          Most cited references95

          • Record: found
          • Abstract: found
          • Article: not found

          Interoception: the sense of the physiological condition of the body.

          Converging evidence indicates that primates have a distinct cortical image of homeostatic afferent activity that reflects all aspects of the physiological condition of all tissues of the body. This interoceptive system, associated with autonomic motor control, is distinct from the exteroceptive system (cutaneous mechanoreception and proprioception) that guides somatic motor activity. The primary interoceptive representation in the dorsal posterior insula engenders distinct highly resolved feelings from the body that include pain, temperature, itch, sensual touch, muscular and visceral sensations, vasomotor activity, hunger, thirst, and 'air hunger'. In humans, a meta-representation of the primary interoceptive activity is engendered in the right anterior insula, which seems to provide the basis for the subjective image of the material self as a feeling (sentient) entity, that is, emotional awareness.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cortical mechanisms of action selection: the affordance competition hypothesis.

            Paul Cisek (2007)
            At every moment, the natural world presents animals with two fundamental pragmatic problems: selection between actions that are currently possible and specification of the parameters or metrics of those actions. It is commonly suggested that the brain addresses these by first constructing representations of the world on which to build knowledge and make a decision, and then by computing and executing an action plan. However, neurophysiological data argue against this serial viewpoint. In contrast, it is proposed here that the brain processes sensory information to specify, in parallel, several potential actions that are currently available. These potential actions compete against each other for further processing, while information is collected to bias this competition until a single response is selected. The hypothesis suggests that the dorsal visual system specifies actions which compete against each other within the fronto-parietal cortex, while a variety of biasing influences are provided by prefrontal regions and the basal ganglia. A computational model is described, which illustrates how this competition may take place in the cerebral cortex. Simulations of the model capture qualitative features of neurophysiological data and reproduce various behavioural phenomena.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of acute bouts of exercise on cognition.

              A review was conducted of studies that assessed the effects of acute bouts of physical activity on adults' cognitive performance. Three groups of studies were constituted on the basis of the type of exercise protocol employed. Each group was then evaluated in terms of information-processing theory. It was concluded that submaximal aerobic exercise performed for periods up to 60 min facilitate specific aspects of information processing; however, extended exercise that leads to dehydration compromises both information processing and memory functions. The selective effects of exercise on cognitive performance are explained in terms of Sanders' [Acta Psychol. 53 (1983) 61] cognitive-energetic model.
                Bookmark

                Author and article information

                Journal
                Sports Medicine
                Sports Med
                Springer Science and Business Media LLC
                0112-1642
                1179-2035
                June 2014
                April 5 2014
                June 2014
                : 44
                : 6
                : 763-775
                Article
                10.1007/s40279-014-0163-0
                24706362
                225cc3db-7a66-4b0d-9899-e6d40674402b
                © 2014

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article