20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CryoEM structure of the human SLC4A4 sodium-coupled acid-base transporter NBCe1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Na +-coupled acid–base transporters play essential roles in human biology. Their dysfunction has been linked to cancer, heart, and brain disease. High-resolution structures of mammalian Na +-coupled acid–base transporters are not available. The sodium-bicarbonate cotransporter NBCe1 functions in multiple organs and its mutations cause blindness, abnormal growth and blood chemistry, migraines, and impaired cognitive function. Here, we have determined the structure of the membrane domain dimer of human NBCe1 at 3.9 Å resolution by cryo electron microscopy. Our atomic model and functional mutagenesis revealed the ion accessibility pathway and the ion coordination site, the latter containing residues involved in human disease-causing mutations. We identified a small number of residues within the ion coordination site whose modification transformed NBCe1 into an anion exchanger. Our data suggest that symporters and exchangers utilize comparable transport machinery and that subtle differences in their substrate-binding regions have very significant effects on their transport mode.

          Abstract

          Na +-coupled acid-base membrane transport proteins regulate blood pressure, ion homeostasis and acid-base chemistry. Here the authors present the 3.9 Å resolution cryoEM structure of the sodium-bicarbonate cotransporter NBCe1 and characterize its ion coordination site and ion accessibility pathway with mutagenesis experiments.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Structure of the TRPV1 ion channel determined by electron cryo-microscopy

          Transient receptor potential (TRP) channels are sensors for a wide range of cellular and environmental signals, but elucidating how these channels respond to physical and chemical stimuli has been hampered by a lack of detailed structural information. Here, we exploit advances in electron cryo-microscopy to determine the structure of a mammalian TRP channel, TRPV1, at 3.4Å resolution, breaking the side-chain resolution barrier for membrane proteins without crystallization. Like voltage-gated channels, TRPV1 exhibits four-fold symmetry around a central ion pathway formed by transmembrane helices S5–S6 and the intervening pore loop, which is flanked by S1–S4 voltage sensor-like domains. TRPV1 has a wide extracellular ‘mouth’ with short selectivity filter. The conserved ‘TRP domain’ interacts with the S4–S5 linker, consistent with its contribution to allosteric modulation. Subunit organization is facilitated by interactions among cytoplasmic domains, including N-terminal ankyrin repeats. These observations provide a structural blueprint for understanding unique aspects of TRP channel function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Sampling the conformational space of the catalytic subunit of human γ-secretase

            Human γ-secretase is an intra-membrane protease that cleaves many different substrates. Aberrant cleavage of Notch is implicated in cancer, while abnormalities in cutting amyloid precursor protein lead to Alzheimer's disease. Our previous cryo-EM structure of γ-secretase revealed considerable disorder in its catalytic subunit presenilin. Here, we describe an image classification procedure that characterizes molecular plasticity at the secondary structure level, and apply this method to identify three distinct conformations in our previous sample. In one of these conformations, an additional transmembrane helix is visible that cannot be attributed to the known components of γ-secretase. In addition, we present a γ-secretase structure in complex with the dipeptidic inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT). Our results reveal how conformational mobility in the second and sixth transmembrane helices of presenilin is greatly reduced upon binding of DAPT or the additional helix, and form the basis for a new model of how substrate enters the transmembrane domain. DOI: http://dx.doi.org/10.7554/eLife.11182.001
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structure of the voltage-gated calcium channel Cav1.1 at 3.6 Å resolution.

              The voltage-gated calcium (Cav) channels convert membrane electrical signals to intracellular Ca(2+)-mediated events. Among the ten subtypes of Cav channel in mammals, Cav1.1 is specified for the excitation-contraction coupling of skeletal muscles. Here we present the cryo-electron microscopy structure of the rabbit Cav1.1 complex at a nominal resolution of 3.6 Å. The inner gate of the ion-conducting α1-subunit is closed and all four voltage-sensing domains adopt an 'up' conformation, suggesting a potentially inactivated state. The extended extracellular loops of the pore domain, which are stabilized by multiple disulfide bonds, form a windowed dome above the selectivity filter. One side of the dome provides the docking site for the α2δ-1-subunit, while the other side may attract cations through its negative surface potential. The intracellular I-II and III-IV linker helices interact with the β1a-subunit and the carboxy-terminal domain of α1, respectively. Classification of the particles yielded two additional reconstructions that reveal pronounced displacement of β1a and adjacent elements in α1. The atomic model of the Cav1.1 complex establishes a foundation for mechanistic understanding of excitation-contraction coupling and provides a three-dimensional template for molecular interpretations of the functions and disease mechanisms of Cav and Nav channels.
                Bookmark

                Author and article information

                Contributors
                apushkin@mednet.ucla.edu
                Hong.Zhou@ucla.edu
                ikurtz@mednet.ucla.edu
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                2 March 2018
                2 March 2018
                2018
                : 9
                : 900
                Affiliations
                [1 ]ISNI 0000 0000 9632 6718, GRID grid.19006.3e, Department of Medicine, Division of Nephrology, David Geffen School of Medicine, , University of California, ; Los Angeles, CA 90095 USA
                [2 ]ISNI 0000 0000 9632 6718, GRID grid.19006.3e, California NanoSystems Institute, , University of California, ; Los Angeles, CA 90095 USA
                [3 ]ISNI 0000 0000 9632 6718, GRID grid.19006.3e, Department of Microbiology, Immunology & Molecular Genetics, , University of California, ; Los Angeles, CA 90095 USA
                [4 ]ISNI 0000 0000 9632 6718, GRID grid.19006.3e, Department of Neurobiology, , University of California, ; Los Angeles, CA 90095 USA
                [5 ]ISNI 0000 0000 9632 6718, GRID grid.19006.3e, Brain Research Institute, , University of California, ; Los Angeles, CA 90095 USA
                Article
                3271
                10.1038/s41467-018-03271-3
                5834491
                29500354
                22682f40-2ed9-413f-b2e4-320e70cb52e9
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 11 August 2017
                : 1 February 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article