39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Spatial distribution of trace elements and ecotoxicity of bottom sediments in Rybnik reservoir, Silesian-Poland

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of study was to integrate chemical analyses and toxicity bioassays in order to assess the environmental risk connected with the presence of trace elements in the sediments. This study examined the ecological significance of trace elements in bottom sediments by applying a set of complementary sediment quality assessment methods sediment quality guidelines (SQGs) (mean probable effect concentration quotient (PECQ)), potential ecological risk index (PERI), contamination degree ( C d) and two bioassays: the bacterial luminescence inhibition test with Vibrio fischeri on sediment elutriates and the direct contact test with the ostracod crustacean Heterocypris incongruens. The samples were collected from 50 stations of Rybnik reservoir. The reservoir is a region with enormous concentration of industry, mainly hard coal mining, electric power industry, and transportation. Despite the high diversity in metal concentration in the sediments, the spatial distribution of trace elements in the sediments was very similar. Moreover, the strong positive correlations between individual pairs of trace elements indicate that they may derive from a similar source and move together. According to mean PECQs, 68 % of the samples were potentially non-toxic and 32 % of the samples were potentially toxic. PERI values suggested that 70 % of the sediment sampling sites exhibited low ecological risk from metal pollution while 24 % of the samples had severe and serious risk. Based on our combined evaluation, we believe that Cd and Cu in the sediment samples frequently caused adverse biological effects. Higher toxic responses were observed in the Microtox test than in the Ostracodtoxkit test. All the sediment samples were found toxic to V. fischeri, and 96 % of the samples had effect percentages >50 %. For H. incongruens, 12 % of the sediments were not toxic and 44 % had effect percentages >50 %. In order to perform a complex assessment of the environmental impact of metal pollution, both chemical and ecotoxicological analysis should be carried out.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems.

          Numerical sediment quality guidelines (SQGs) for freshwater ecosystems have previously been developed using a variety of approaches. Each approach has certain advantages and limitations which influence their application in the sediment quality assessment process. In an effort to focus on the agreement among these various published SQGs, consensus-based SQGs were developed for 28 chemicals of concern in freshwater sediments (i.e., metals, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and pesticides). For each contaminant of concern, two SQGs were developed from the published SQGs, including a threshold effect concentration (TEC) and a probable effect concentration (PEC). The resultant SQGs for each chemical were evaluated for reliability using matching sediment chemistry and toxicity data from field studies conducted throughout the United States. The results of this evaluation indicated that most of the TECs (i.e., 21 of 28) provide an accurate basis for predicting the absence of sediment toxicity. Similarly, most of the PECs (i.e., 16 of 28) provide an accurate basis for predicting sediment toxicity. Mean PEC quotients were calculated to evaluate the combined effects of multiple contaminants in sediment. Results of the evaluation indicate that the incidence of toxicity is highly correlated to the mean PEC quotient (R(2) = 0.98 for 347 samples). It was concluded that the consensus-based SQGs provide a reliable basis for assessing sediment quality conditions in freshwater ecosystems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review.

            This paper reviews the factors affecting trace metal behaviour in estuarine and riverine floodplain soils and sediments. Spatial occurrence of processes affecting metal mobility and availability in floodplains are largely determined by the topography. At the oxic-anoxic interface and in the anoxic layers of floodplain soils, especially redox-sensitive processes occur, which mainly result in the inclusion of metals in precipitates or the dissolution of metal-containing precipitates. Kinetics of these processes are of great importance for these soils as the location of the oxic-anoxic interface is subject to change due to fluctuating water table levels. Other important processes and factors affecting metal mobility in floodplain soils are adsorption/desorption processes, salinity, the presence of organic matter, sulphur and carbonates, pH and plant growth. Many authors report highly significant correlations between cation exchange capacity, clay or organic matter contents and metal contents in floodplain soils. Iron and manganese (hydr)oxides were found to be the main carriers for Cd, Zn and Ni under oxic conditions, whereas the organic fraction was most important for Cu. The mobility and availability of metals in a floodplain soil can be significantly reduced by the formation of metal sulphide precipitates under anoxic conditions. Ascending salinity in the flood water promotes metal desorption from the floodplain soil in the absence of sulphides, hence increases total metal concentrations in the water column. The net effect of the presence of organic matter can either be a decrease or an increase in metal mobility, whereas the presence of carbonates in calcareous floodplain soils or sediments constitutes an effective buffer against a pH decrease. Moreover, carbonates may also directly precipitate metals. Plants can affect the metal mobility in floodplain soils by oxidising their rhizosphere, taking up metals, excreting exudates and stimulating the activity of microbial symbionts in the rhizosphere.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir.

              The concentrations of metals, loss of ignition and nutrient (N, P) were determined in the bottom sediments of the Rybnik Reservoir (southern Poland). The mean concentrations of the metals in the bottom sediments were: Cd 25.8 microgram/g, Cu 451.7 microgram/g, Zn 1583.4 microgram/g, Ni 71.1 microgram/g, Pb 118.6 microgram/g, Cr 129.8 microgram/g, Fe 38782 microgram/g and Mn 2018.7 microgram/g. The bottom sediments are very heavily loaded with zinc, manganese, copper, nickel, phosphorus and lead (percentage enrichment factor), and cadmium, phosphorus and zinc (index of geoaccumulation). The increase of cadmium, lead, nickel and zinc concentrations was connected with the inflow of the contaminated water of the river Ruda and long-range transport. The contamination of the reservoir with copper and manganese resulted mainly from atmospheric precipitation. The variability of the bottom sediment loading with metals during the investigations was affected in the first place by changes in the concentration of iron, but also those elements whose concentrations in the bottom sediment were elevated compared to the concentrations in shale--cadmium, nickel and lead.
                Bookmark

                Author and article information

                Contributors
                +48 12 662 43 52 , +48 12 662 43 41 , Agnieszka.Baran@ur.krakow.pl , baranaga1@wp.pl
                Journal
                Environ Sci Pollut Res Int
                Environ Sci Pollut Res Int
                Environmental Science and Pollution Research International
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0944-1344
                1614-7499
                25 May 2016
                25 May 2016
                2016
                : 23
                : 17
                : 17255-17268
                Affiliations
                [1 ]Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, Al. Mickiewicza 21, Krakow, 31-120 Poland
                [2 ]Department of Hydraulic Engineering and Geotechnics, University of Agriculture in Krakow, Al. Mickiewicza 24/28, Krakow, 30-059 Poland
                Author notes

                Responsible editor: Philippe Garrigues

                Article
                6678
                10.1007/s11356-016-6678-1
                5010598
                27221466
                226b93d1-5687-4fd1-86ef-0b58ff56a452
                © The Author(s) 2016

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 14 December 2015
                : 10 April 2016
                Funding
                Funded by: Polish Ministry of Science and Higher Education
                Award ID: DS-3148/KChRiŚ
                Award ID: DS-3322/KIWiG
                Award Recipient :
                Categories
                Research Article
                Custom metadata
                © Springer-Verlag Berlin Heidelberg 2016

                General environmental science
                bottom sediment,spatial distribution,trace elements,biotest,ecological risk assessment

                Comments

                Comment on this article