4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A review of interactions between peripheral and foveal vision

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Visual processing varies dramatically across the visual field. These differences start in the retina and continue all the way to the visual cortex. Despite these differences in processing, the perceptual experience of humans is remarkably stable and continuous across the visual field. Research in the last decade has shown that processing in peripheral and foveal vision is not independent, but is more directly connected than previously thought. We address three core questions on how peripheral and foveal vision interact, and review recent findings on potentially related phenomena that could provide answers to these questions. First, how is the processing of peripheral and foveal signals related during fixation? Peripheral signals seem to be processed in foveal retinotopic areas to facilitate peripheral object recognition, and foveal information seems to be extrapolated toward the periphery to generate a homogeneous representation of the environment. Second, how are peripheral and foveal signals re-calibrated? Transsaccadic changes in object features lead to a reduction in the discrepancy between peripheral and foveal appearance. Third, how is peripheral and foveal information stitched together across saccades? Peripheral and foveal signals are integrated across saccadic eye movements to average percepts and to reduce uncertainty. Together, these findings illustrate that peripheral and foveal processing are closely connected, mastering the compromise between a large peripheral visual field and high resolution at the fovea.

          Related collections

          Most cited references269

          • Record: found
          • Abstract: found
          • Article: not found

          Speed of processing in the human visual system.

          How long does it take for the human visual system to process a complex natural image? Subjectively, recognition of familiar objects and scenes appears to be virtually instantaneous, but measuring this processing time experimentally has proved difficult. Behavioural measures such as reaction times can be used, but these include not only visual processing but also the time required for response execution. However, event-related potentials (ERPs) can sometimes reveal signs of neural processing well before the motor output. Here we use a go/no-go categorization task in which subjects have to decide whether a previously unseen photograph, flashed on for just 20 ms, contains an animal. ERP analysis revealed a frontal negativity specific to no-go trials that develops roughly 150 ms after stimulus onset. We conclude that the visual processing needed to perform this highly demanding task can be achieved in under 150 ms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The distinct modes of vision offered by feedforward and recurrent processing.

            An analysis of response latencies shows that when an image is presented to the visual system, neuronal activity is rapidly routed to a large number of visual areas. However, the activity of cortical neurons is not determined by this feedforward sweep alone. Horizontal connections within areas, and higher areas providing feedback, result in dynamic changes in tuning. The differences between feedforward and recurrent processing could prove pivotal in understanding the distinctions between attentive and pre-attentive vision as well as between conscious and unconscious vision. The feedforward sweep rapidly groups feature constellations that are hardwired in the visual brain, yet is probably incapable of yielding visual awareness; in many cases, recurrent processing is necessary before the features of an object are attentively grouped and the stimulus can enter consciousness.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The ventriloquist effect results from near-optimal bimodal integration.

              Ventriloquism is the ancient art of making one's voice appear to come from elsewhere, an art exploited by the Greek and Roman oracles, and possibly earlier. We regularly experience the effect when watching television and movies, where the voices seem to emanate from the actors' lips rather than from the actual sound source. Originally, ventriloquism was explained by performers projecting sound to their puppets by special techniques, but more recently it is assumed that ventriloquism results from vision "capturing" sound. In this study we investigate spatial localization of audio-visual stimuli. When visual localization is good, vision does indeed dominate and capture sound. However, for severely blurred visual stimuli (that are poorly localized), the reverse holds: sound captures vision. For less blurred stimuli, neither sense dominates and perception follows the mean position. Precision of bimodal localization is usually better than either the visual or the auditory unimodal presentation. All the results are well explained not by one sense capturing the other, but by a simple model of optimal combination of visual and auditory information.
                Bookmark

                Author and article information

                Journal
                J Vis
                J Vis
                jovi
                JOVI
                Journal of Vision
                The Association for Research in Vision and Ophthalmology
                1534-7362
                03 November 2020
                November 2020
                : 20
                : 12
                Affiliations
                [1 ]Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany
                [2 ]Dipartimento di Psicologia, Universitá di Bologna, Bologna, Italy
                [3 ]Center for Mind, Brain and Behavior, Philipps-Universität Marburg, Marburg, Germany
                Author notes
                Article
                JOV-07514-2020
                10.1167/jov.20.12.2
                7645222
                33141171
                22721257-ed90-48f4-a0af-c5d0253b536a
                Copyright 2020 The Authors

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                Page count
                Pages: 35
                Product
                Categories
                Review
                Review

                peripheral,foveal,review
                peripheral, foveal, review

                Comments

                Comment on this article