13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      High-resolution U-series dates from the Sima de los Huesos hominids yields : implications for the evolution of the early Neanderthal lineage

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Time dependency of molecular rate estimates and systematic overestimation of recent divergence times.

          Studies of molecular evolutionary rates have yielded a wide range of rate estimates for various genes and taxa. Recent studies based on population-level and pedigree data have produced remarkably high estimates of mutation rate, which strongly contrast with substitution rates inferred in phylogenetic (species-level) studies. Using Bayesian analysis with a relaxed-clock model, we estimated rates for three groups of mitochondrial data: avian protein-coding genes, primate protein-coding genes, and primate d-loop sequences. In all three cases, we found a measurable transition between the high, short-term (< 1-2 Myr) mutation rate and the low, long-term substitution rate. The relationship between the age of the calibration and the rate of change can be described by a vertically translated exponential decay curve, which may be used for correcting molecular date estimates. The phylogenetic substitution rates in mitochondria are approximately 0.5% per million years for avian protein-coding sequences and 1.5% per million years for primate protein-coding and d-loop sequences. Further analyses showed that purifying selection offers the most convincing explanation for the observed relationship between the estimated rate and the depth of the calibration. We rule out the possibility that it is a spurious result arising from sequence errors, and find it unlikely that the apparent decline in rates over time is caused by mutational saturation. Using a rate curve estimated from the d-loop data, several dates for last common ancestors were calculated: modern humans and Neandertals (354 ka; 222-705 ka), Neandertals (108 ka; 70-156 ka), and modern humans (76 ka; 47-110 ka). If the rate curve for a particular taxonomic group can be accurately estimated, it can be a useful tool for correcting divergence date estimates by taking the rate decay into account. Our results show that it is invalid to extrapolate molecular rates of change across different evolutionary timescales, which has important consequences for studies of populations, domestication, conservation genetics, and human evolution.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Neandertal DNA Sequences and the Origin of Modern Humans

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Sima de los Huesos crania (Sierra de Atapuerca, Spain). A comparative study.

              The Sima de los Huesos (Sierra de Atapuerca) cranial remains found up to and including the 1995 field season are described and compared with other fossils in order to assess their evolutionary relationships. The phenetic affinities of the Sima de los Huesos crania and a large sample of Homo fossils are investigated through principal component analyses. Metrical comparisons of the Sima de los Huesos and other European and African Middle Pleistocene fossils with Neandertals are performed using Z-scores relative to the Neandertal sample statistics. The most relevant cranial traits are metrically and morphologically analyzed and cladistically evaluated. The Sima de los Huesos crania exhibit a number of primitive traits lost in Upper Pleistocene Neandertals (especially in the braincase, but also in the facial skeleton), as well as other traits that are transitional to the Neandertal morphology (particularly in the occipital bone), and features close to what is found in Neandertals (as the supraorbital morphology and midfacial prognathism). Different combinations of primitive and derived traits (shared with Neandertals) are also displayed by the other European Middle Pleistocene fossils. In conclusion, the Sima de los Huesos sample is evolutionarily related to Neandertals as well as to the other European Middle Pleistocene fossils. In our opinion, all the European Middle Pleistocene fossils belong to the Neandertal lineage, and none can be included in an Afroeuropean common ancestor of Neandertals and modern humans.
                Bookmark

                Author and article information

                Journal
                Journal of Archaeological Science
                Journal of Archaeological Science
                Elsevier BV
                03054403
                May 2007
                May 2007
                : 34
                : 5
                : 763-770
                Article
                10.1016/j.jas.2006.08.003
                2276a846-e66c-4682-8dec-29f66108b3bc
                © 2007

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article