23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparison of the Mutational Profiles of Primary Myelofibrosis, Polycythemia Vera, and Essential Thrombocytosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives: To compare the mutational profiles of patients with primary myelofibrosis (PMF), polycythemia vera (PV), and essential thrombocytosis (ET).

          Methods: Next-generation sequencing results of 75 cases of PMF, 33 cases of PV, and 27 cases of ET were compared.

          Results: Mutation rates of ASXL1 and SRSF2 were significantly higher in PMF than in PV or ET. ASXL1 mutations appeared to be more frequently associated with risk of transformation to acute myeloid leukemia than JAK2 or TET2 mutations. The most common mutation-cytogenetic combinations in myeloproliferative neoplasm (MPN) were mutations of JAK2 or ASXL1 with del(20q) and were more common in patients with PMF and PV than in patients with ET. Differences were also found between patients with PMF and PV.

          Conclusions: PMF, PV, and ET show different mutational profiles, which may be helpful in resolving the differential diagnosis between MPNs. Due to the relatively small number of cases and variable testing over time, larger controlled studies are necessary to confirm the findings.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis.

          Myelofibrosis is a Philadelphia chromosome–negative myeloproliferative neoplasm associated with cytopenias, splenomegaly, poor quality of life, and shortened survival. About half of patients with myelofibrosis carry a gain-of-function mutation in the Janus kinase 2 gene (JAK2 V617F) that contributes to the pathophysiology of the disease. INCB018424 is a potent and selective Janus kinase 1 (JAK1) and JAK2 inhibitor. We conducted a phase 1−2 trial of INCB018424 in patients with JAK2 V617F−positive or JAK2 V617F−negative primary myelofibrosis, post–essential thrombocythemia myelofibrosis, or post–polycythemia vera myelofibrosis. A total of 153 patients received INCB018424 for a median duration of more than 14.7 months. The initial dose-escalation phase established 25 mg twice daily or 100 mg once daily as maximum tolerated doses, on the basis of reversible thrombocytopenia. A dose-dependent suppression of phosphorylated signal transducer and activator of transcription 3 (STAT3), a marker of JAK signaling, was demonstrated in patients with wild-type JAK2 and in patients with the JAK2 V617F mutation. We studied additional doses and established that a 15-mg twice-daily starting dose, followed by individualized dose titration, was the most effective and safest dosing regimen. At this dose, 17 of 33 patients (52%) had a rapid objective response (≥50% reduction of splenomegaly) lasting for 12 months or more, and this therapy was associated with grade 3 or grade 4 adverse events (mainly myelosuppression) in less than 10% of patients. Patients with debilitating symptoms, including weight loss, fatigue, night sweats, and pruritus, had rapid improvement. Clinical benefits were associated with a marked diminution of levels of circulating inflammatory cytokines that are commonly elevated in myelofibrosis. INCB018424 was associated with marked and durable clinical benefits in patients with myelofibrosis for whom no approved therapies existed. (Funded by Incyte; ClinicalTrials.gov number, NCT00509899.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis.

            Janus kinase 2 (JAK2) mutations define polycythemia vera (PV). Calreticulin (CALR) and myeloproliferative leukemia virus oncogene (MPL) mutations are specific to JAK2-unmutated essential thrombocythemia (ET) and primary myelofibrosis (PMF). We examined the effect of these mutations on long-term disease outcome. One thousand five hundred eighty-one patients from the Mayo Clinic (n = 826) and Italy (n = 755) were studied. Fifty-eight percent of Mayo patients were followed until death; median survivals were 19.8 years in ET (n = 292), 13.5 PV (n = 267; hazard ratio [HR], 1.8; 95% confidence interval [CI], 1.4-2.2), and 5.9 PMF (n = 267; HR, 4.5; 95% CI, 3.5-5.7). The survival advantage of ET over PV was not affected by JAK2/CALR/MPL mutational status. Survival in ET was inferior to the age- and sex-matched US population (P < .001). In PMF (n = 428), but not in ET (n = 576), survival and blast transformation (BT) were significantly affected by mutational status; outcome was best in CALR-mutated and worst in triple-negative patients: median survival, 16 vs 2.3 years (HR, 5.1; 95% CI, 3.2-8.0) and BT, 6.5% vs 25% (HR, 7.6; 95% CI, 2.8-20.2), respectively. We conclude that life expectancy in morphologically defined ET is significantly reduced but remains superior to that of PV, regardless of mutational status. In PMF, JAK2/CALR/MPL mutational status is prognostically informative.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mutations and prognosis in primary myelofibrosis.

              Patient outcome in primary myelofibrosis (PMF) is significantly influenced by karyotype. We studied 879 PMF patients to determine the individual and combinatorial prognostic relevance of somatic mutations. Analysis was performed in 483 European patients and the seminal observations were validated in 396 Mayo Clinic patients. Samples from the European cohort, collected at time of diagnosis, were analyzed for mutations in ASXL1, SRSF2, EZH2, TET2, DNMT3A, CBL, IDH1, IDH2, MPL and JAK2. Of these, ASXL1, SRSF2 and EZH2 mutations inter-independently predicted shortened survival. However, only ASXL1 mutations (HR: 2.02; P<0.001) remained significant in the context of the International Prognostic Scoring System (IPSS). These observations were validated in the Mayo Clinic cohort where mutation and survival analyses were performed from time of referral. ASXL1, SRSF2 and EZH2 mutations were independently associated with poor survival, but only ASXL1 mutations held their prognostic relevance (HR: 1.4; P=0.04) independent of the Dynamic IPSS (DIPSS)-plus model, which incorporates cytogenetic risk. In the European cohort, leukemia-free survival was negatively affected by IDH1/2, SRSF2 and ASXL1 mutations and in the Mayo cohort by IDH1 and SRSF2 mutations. Mutational profiling for ASXL1, EZH2, SRSF2 and IDH identifies PMF patients who are at risk for premature death or leukemic transformation.
                Bookmark

                Author and article information

                Journal
                Am J Clin Pathol
                Am. J. Clin. Pathol
                ajcp
                American Journal of Clinical Pathology
                Oxford University Press
                0002-9173
                1943-7722
                May 2017
                15 April 2017
                15 April 2017
                : 147
                : 5
                : 444-452
                Affiliations
                From the Departments of [1 ]Hematopathology and Laboratory Medicine
                [2 ]Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
                Author notes
                Corresponding author: Jinming Song, MD, PhD, 12902 USF Magnolia Dr, Tampa, FL 33612; Jinming.Song@ 123456moffitt.org .
                Article
                aqw222
                10.1093/ajcp/aqw222
                5402718
                28419183
                2291e895-950a-4e94-be87-e3ad7b6402e8
                © American Society for Clinical Pathology, 2017.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                Page count
                Pages: 9
                Categories
                Original Articles
                Featured

                mpn,pmf,pv,et,mutation,genetics,molecular,profile,myelofibrosis
                mpn, pmf, pv, et, mutation, genetics, molecular, profile, myelofibrosis

                Comments

                Comment on this article