5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A cerebellar window for intravital imaging of normal and disease states in mice

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this protocol, the skull overlying the cerebellum is removed and a window is applied, enabling intravital imaging to provide a detailed characterization of dynamic processes in this region of the mouse brain.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Matrix stiffness drives Epithelial-Mesenchymal Transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway

          Matrix stiffness potently regulates cellular behavior in various biological contexts. In breast tumours, the presence of dense clusters of collagen fibrils indicates increased matrix stiffness and correlates with poor survival. It is unclear how mechanical inputs are transduced into transcriptional outputs to drive tumour progression. Here we report that TWIST1 is an essential mechano-mediator that promotes epithelial-mesenchymal transition (EMT) in response to increasing matrix stiffness. High matrix stiffness promotes nuclear translocation of TWIST1 by releasing TWIST1 from its cytoplasmic binding partner G3BP2. Loss of G3BP2 leads to constitutive TWIST1 nuclear localization and synergizes with increasing matrix stiffness to induce EMT and promote tumour invasion and metastasis. In human breast tumours, collagen fiber alignment, a marker of increasing matrix stiffness, and reduced expression of G3BP2 together predict poor survival. Our findings reveal a TWIST1-G3BP2 mechanotransduction pathway that responds to biomechanical signals from the tumour microenvironment to drive EMT, invasion, and metastasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner

            The blood vessels of cancerous tumours are leaky 1–3 and poorly organized 4–7 . This can increase the interstitial fluid pressure (IFP) inside tumours and reduce blood supply to them, which impairs drug delivery 8–9 . Anti-angiogenic therapies – which “normalize” the abnormal blood vessels in tumours by making them less leaky – have been shown to improve the delivery and effectiveness of chemotherapeutics with low molecular-weights 10 , but it remains unclear whether normalizing tumour vessels can improve the delivery of nanomedicines. Here we show that repairing the abnormal vessels in mammary tumours, by blocking vascular endothelial growth factor (VEGF) receptor-2, improves the delivery of small nanoparticles (12nm diameter) while hindering the delivery of large nanoparticles (125nm diameter). We utilize a mathematical model to show that reducing vessel wall pore sizes through normalization decreases IFP in tumours, allowing small nanoparticles to enter them more rapidly. However, increased steric and hydrodynamic hindrances, also associated with smaller pores, make it more difficult for large nanoparticles to enter tumours. Our results further suggest that smaller (~12nm) nanomedicines are ideal for cancer therapy, owing to superior tumour penetration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes.

              After entry into lymph nodes (LNs), B cells migrate to follicles, whereas T cells remain in the paracortex, with each lymphocyte type showing apparently random migration within these distinct areas. Other than chemokines, the factors contributing to this spatial segregation and to the observed patterns of lymphocyte movement are poorly characterized. By combining confocal, electron, and intravital microscopy, we showed that the fibroblastic reticular cell network regulated naive T cell access to the paracortex and also supported and defined the limits of T cell movement within this domain, whereas a distinct follicular dendritic cell network similarly served as the substratum for movement of follicular B cells. These results highlight the central role of stromal microanatomy in orchestrating cell migration within the LN.
                Bookmark

                Author and article information

                Journal
                Nature Protocols
                Nat Protoc
                Springer Nature
                1754-2189
                1750-2799
                October 5 2017
                October 5 2017
                : 12
                : 11
                : 2251-2262
                Article
                10.1038/nprot.2017.101
                5918134
                28981123
                229c6447-f77b-4a35-9270-d2f821a00eff
                © 2017
                History

                Comments

                Comment on this article