34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hypoxia shifts activity of neuropeptide Y in Ewing sarcoma from growth-inhibitory to growth-promoting effects

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ewing sarcoma (ES) is an aggressive malignancy driven by an oncogenic fusion protein, EWS-FLI1. Neuropeptide Y (NPY), and two of its receptors, Y1R and Y5R are up-regulated by EWS-FLI1 and abundantly expressed in ES cells. Paradoxically, NPY acting via Y1R and Y5R stimulates ES cell death. Here, we demonstrate that these growth-inhibitory actions of NPY are counteracted by hypoxia, which converts the peptide to a growth-promoting factor. In ES cells, hypoxia induces another NPY receptor, Y2R, and increases expression of dipeptidyl peptidase IV (DPPIV), an enzyme that cleaves NPY to a shorter form, NPY3-36. This truncated peptide no longer binds to Y1R and, therefore, does not stimulate ES cell death. Instead, NPY3-36 acts as a selective Y2R/Y5R agonist. The hypoxia-induced increase in DPPIV activity is most evident in a population of ES cells with high aldehyde dehydrogenase (ALDH) activity, rich in cancer stem cells (CSCs). Consequently, NPY, acting via Y2R/Y5Rs, preferentially stimulates proliferation and migration of hypoxic ALDHhigh cells. Hypoxia also enhances the angiogenic potential of ES by inducing Y2Rs in endothelial cells and increasing the release of its ligand, NPY3-36, from ES cells. In summary, hypoxia acts as a molecular switch shifting NPY activity away from Y1R/Y5R-mediated cell death and activating the Y2R/Y5R/DPPIV/NPY3-36 axis, which stimulates ES CSCs and promotes angiogenesis. Hypoxia-driven actions of the peptide such as these may contribute to ES progression. Due to the receptor-specific and multifaceted nature of NPY actions, these findings may inform novel therapeutic approaches to ES.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Dipeptidyl-peptidase IV (CD26)--role in the inactivation of regulatory peptides.

          Dipeptidyl-peptidase IV (DPP IV/CD26) has a dual function as a regulatory protease and as a binding protein. Its role in the inactivation of bioactive peptides was recognized 20 years ago due to its unique ability to liberate Xaa-Pro or Xaa-Ala dipeptides from the N-terminus of regulatory peptides, but further examples are now emerging from in vitro and vivo experiments. Despite the minimal N-terminal truncation by DPP IV, many mammalian regulatory peptides are inactivated--either totally or only differentially--for certain receptor subtypes. Important DPP IV substrates include neuropeptides like neuropeptide Y or endomorphin, circulating peptide hormones like peptide YY, growth hormone-releasing hormone, glucagon-like peptides(GLP)-1 and -2, gastric inhibitory polypeptide as well as paracrine chemokines like RANTES (regulated on activation normal T cell expressed and secreted), stromal cell-derived factor, eotaxin and macrophage-derived chemokine. Based on these findings the potential clinical uses of selective DPP IV inhibitors or DPP IV-resistant analogues, especially for the insulinotropic hormone GLP-1, have been tested to enhance insulin secretion and to improve glucose tolerance in diabetic animals. Thus, DPP IV appears to be a major physiological regulator for some regulatory peptides, neuropeptides, circulating hormones and chemokines.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer.

            Recent evidence suggests that a subpopulation of cancer cells, cancer stem cells (CSCs), is responsible for tumor growth in colorectal cancer. However, the role of CSCs in colorectal cancer metastasis is unclear. Here, we identified a subpopulation of CD26(+) cells uniformly present in both the primary and metastatic tumors in colorectal cancer patients with liver metastasis. Furthermore, in patients without distant metastasis at the time of presentation, the presence of CD26(+) cells in their primary tumors predicted distant metastasis on follow-up. Isolated CD26(+) cells, but not CD26(-) cells, led to development of distant metastasis when injected into the mouse cecal wall. CD26(+) cells were also associated with enhanced invasiveness and chemoresistance. Our findings have uncovered a critical role of CSCs in metastatic progression of cancer. Furthermore, the ability to predict metastasis based on analysis of CSC subsets in the primary tumor may have important clinical implication as a selection criterion for adjuvant therapy. Copyright 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Primary disseminated multifocal Ewing sarcoma: results of the Euro-EWING 99 trial.

              To improve the poor prognosis of patients with primary disseminated multifocal Ewing sarcomas (PDMES) with a dose-intense treatment concept. From 1999 to 2005, 281 patients with PDMES were enrolled onto the Euro-EWING 99 R3 study. Median age was 16.2 years (range, 0.4 to 49 years). Recommended treatment consisted of six cycles of vincristine, ifosfamide, doxorubicin, and etoposide (VIDE), one cycle of vincristine, dactinomycin, and ifosfamide (VAI), local treatment (surgery and/or radiotherapy), and high-dose busulfan-melphalan followed by autologous stem-cell transplantation (HDT/SCT). After a median follow-up of 3.8 years, event-free survival (EFS) and overall survival (OS) at 3 years for all 281 patients were 27% +/- 3% and 34% +/- 4% respectively. Six VIDE cycles were completed by 250 patients (89%); 169 patients (60%) received HDT/SCT. The estimated 3-year EFS from the start of HDT/SCT was 45% for 46 children younger than 14 years. Cox regression analyses demonstrated increased risk at diagnosis for patients older than 14 years (hazard ratio [HR] = 1.6), a primary tumor volume more than 200 mL (HR = 1.8), more than one bone metastatic site (HR = 2.0), bone marrow metastases (HR = 1.6), and additional lung metastases (HR = 1.5). An up-front risk score based on these HR factors identified three groups with EFS rates of 50% for score or= 5 (70 patients; P < .0001). PDMES patients may survive with intensive multimodal therapy. Age, tumor volume, and extent of metastatic spread are relevant risk factors. A score based on these factors may facilitate risk-adapted treatment approaches.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                December 2013
                26 November 2013
                : 4
                : 12
                : 2487-2501
                Affiliations
                1 Department of Nursing, School of Nursing and Health Studies, Georgetown University, Washington DC
                2 Department of Human Science, School of Nursing and Health Studies, Georgetown University, Washington DC
                3 McGovern Institute, Massachusetts Institute of Technology, Boston, MA
                4 Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Georgetown University, Washington DC
                5 Department of Pathology and Neuropathology, Medical University of Gdańsk, Poland
                6 Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington DC
                7 Department of Biostatistics and Bioinformatics, Georgetown University Medical Center, Georgetown University, Washington DC
                Author notes
                Correspondence: Joanna Kitlinska, jbk4@ 123456georgetown.edu
                Article
                10.18632/oncotarget.1604
                3926843
                24318733
                22a4f6f1-21d4-4b64-9a0d-aa8e9f3b5cf1
                Copyright: © 2013 Tilan et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 19 November 2013
                : 24 November 2013
                Categories
                Research Paper

                Oncology & Radiotherapy
                neuropeptide y,ewing sarcoma,hypoxia,cancer stem cells,angiogenesis
                Oncology & Radiotherapy
                neuropeptide y, ewing sarcoma, hypoxia, cancer stem cells, angiogenesis

                Comments

                Comment on this article