4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A lateral electrophoretic flow diagnostic assay

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antibodies against the hepatitis C virus are detected in human sera using the CellScope-enabled electrophoretic barcode assay.

          Abstract

          Immunochromatographic assays are a cornerstone tool in disease screening. To complement existing lateral flow assays (based on wicking flow) we introduce a lateral flow format that employs directed electrophoretic transport. The format is termed a “lateral e-flow assay” and is designed to support multiplexed detection using immobilized reaction volumes of capture antigen. To fabricate the lateral e-flow device, we employ mask-based UV photopatterning to selectively immobilize unmodified capture antigen along the microchannel in a barcode-like pattern. The channel-filling polyacrylamide hydrogel incorporates a photoactive moiety (benzophenone) to immobilize capture antigen to the hydrogel without a priori antigen modification. We report a heterogeneous sandwich assay using low-power electrophoresis to drive biospecimen through the capture antigen barcode. Fluorescence barcode readout is collected via a low-resource appropriate imaging system (CellScope). We characterize lateral e-flow assay performance and demonstrate a serum assay for antibodies to the hepatitis C virus (HCV). In a pilot study, the lateral e-flow assay positively identifies HCV+ human sera in 60 min. The lateral e-flow assay provides a flexible format for conducting multiplexed immunoassays relevant to confirmatory diagnosis in near-patient settings.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Microfluidic diagnostic technologies for global public health.

          The developing world does not have access to many of the best medical diagnostic technologies; they were designed for air-conditioned laboratories, refrigerated storage of chemicals, a constant supply of calibrators and reagents, stable electrical power, highly trained personnel and rapid transportation of samples. Microfluidic systems allow miniaturization and integration of complex functions, which could move sophisticated diagnostic tools out of the developed-world laboratory. These systems must be inexpensive, but also accurate, reliable, rugged and well suited to the medical and social contexts of the developing world.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey.

            Lateral flow (immuno)assays are currently used for qualitative, semiquantitative and to some extent quantitative monitoring in resource-poor or non-laboratory environments. Applications include tests on pathogens, drugs, hormones and metabolites in biomedical, phytosanitary, veterinary, feed/food and environmental settings. We describe principles of current formats, applications, limitations and perspectives for quantitative monitoring. We illustrate the potentials and limitations of analysis with lateral flow (immuno)assays using a literature survey and a SWOT analysis (acronym for "strengths, weaknesses, opportunities, threats"). Articles referred to in this survey were searched for on MEDLINE, Scopus and in references of reviewed papers. Search terms included "immunochromatography", "sol particle immunoassay", "lateral flow immunoassay" and "dipstick assay".
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis.

              This article describes a prototype system for quantifying bioassays and for exchanging the results of the assays digitally with physicians located off-site. The system uses paper-based microfluidic devices for running multiple assays simultaneously, camera phones or portable scanners for digitizing the intensity of color associated with each colorimetric assay, and established communications infrastructure for transferring the digital information from the assay site to an off-site laboratory for analysis by a trained medical professional; the diagnosis then can be returned directly to the healthcare provider in the field. The microfluidic devices were fabricated in paper using photolithography and were functionalized with reagents for colorimetric assays. The results of the assays were quantified by comparing the intensities of the color developed in each assay with those of calibration curves. An example of this system quantified clinically relevant concentrations of glucose and protein in artificial urine. The combination of patterned paper, a portable method for obtaining digital images, and a method for exchanging results of the assays with off-site diagnosticians offers new opportunities for inexpensive monitoring of health, especially in situations that require physicians to travel to patients (e.g., in the developing world, in emergency management, and during field operations by the military) to obtain diagnostic information that might be obtained more effectively by less valuable personnel.
                Bookmark

                Author and article information

                Journal
                LCAHAM
                Lab on a Chip
                Lab Chip
                Royal Society of Chemistry (RSC)
                1473-0197
                1473-0189
                2015
                2015
                : 15
                : 6
                : 1488-1496
                Article
                10.1039/C4LC01370K
                25608872
                22ad9522-a225-48f0-a581-70c4583f1a0a
                © 2015
                History

                Comments

                Comment on this article