13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exacerbation of Glycoprotein VI-Dependent Platelet Responses in a Rhesus Monkey Model of Type 1 Diabetes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Thrombosis is a life-threatening complication of diabetes. Platelet reactivity is crucial to thrombus formation, particularly in arterial vessels and in thrombotic complications causing myocardial infarction or ischaemic stroke, but diabetic patients often respond poorly to current antiplatelet medication. In this study, we used a nonhuman primate model of Type 1 diabetes to measure early downstream signalling events following engagement of the major platelet collagen receptor, glycoprotein (GP)VI. Diabetic monkeys were given enough insulin to maintain their blood glucose levels either at ~8 mM (well-controlled diabetes) or ~15 mM (poorly controlled diabetes). Flow cytometric analysis was used to measure platelet reactive oxygen species (ROS) generation, calcium mobilisation, receptor surface expression, and immature platelet fraction. We observed exacerbated intracellular ROS and calcium flux associated with engagement of GPVI in monkeys with poorly controlled diabetes. GPVI surface levels did not differ between healthy monkeys or the two diabetic groups. Treatment of platelets with the specific Syk inhibitor BAY61-3606 inhibited GPVI-dependent ROS and, importantly, reduced ROS generation in the poorly controlled diabetes group to that observed in healthy monkeys. These data indicate that glycaemic control is important in reducing GPVI-dependent platelet hyperreactivity and point to a potential antithrombotic therapeutic benefit of Syk inhibition in hyperglycaemic diabetes.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients.

          (2002)
          To determine the effects of antiplatelet therapy among patients at high risk of occlusive vascular events. Collaborative meta-analyses (systematic overviews). Randomised trials of an antiplatelet regimen versus control or of one antiplatelet regimen versus another in high risk patients (with acute or previous vascular disease or some other predisposing condition) from which results were available before September 1997. Trials had to use a method of randomisation that precluded prior knowledge of the next treatment to be allocated and comparisons had to be unconfounded-that is, have study groups that differed only in terms of antiplatelet regimen. 287 studies involving 135 000 patients in comparisons of antiplatelet therapy versus control and 77 000 in comparisons of different antiplatelet regimens. "Serious vascular event": non-fatal myocardial infarction, non-fatal stroke, or vascular death. Overall, among these high risk patients, allocation to antiplatelet therapy reduced the combined outcome of any serious vascular event by about one quarter; non-fatal myocardial infarction was reduced by one third, non-fatal stroke by one quarter, and vascular mortality by one sixth (with no apparent adverse effect on other deaths). Absolute reductions in the risk of having a serious vascular event were 36 (SE 5) per 1000 treated for two years among patients with previous myocardial infarction; 38 (5) per 1000 patients treated for one month among patients with acute myocardial infarction; 36 (6) per 1000 treated for two years among those with previous stroke or transient ischaemic attack; 9 (3) per 1000 treated for three weeks among those with acute stroke; and 22 (3) per 1000 treated for two years among other high risk patients (with separately significant results for those with stable angina (P=0.0005), peripheral arterial disease (P=0.004), and atrial fibrillation (P=0.01)). In each of these high risk categories, the absolute benefits substantially outweighed the absolute risks of major extracranial bleeding. Aspirin was the most widely studied antiplatelet drug, with doses of 75-150 mg daily at least as effective as higher daily doses. The effects of doses lower than 75 mg daily were less certain. Clopidogrel reduced serious vascular events by 10% (4%) compared with aspirin, which was similar to the 12% (7%) reduction observed with its analogue ticlopidine. Addition of dipyridamole to aspirin produced no significant further reduction in vascular events compared with aspirin alone. Among patients at high risk of immediate coronary occlusion, short term addition of an intravenous glycoprotein IIb/IIIa antagonist to aspirin prevented a further 20 (4) vascular events per 1000 (P<0.0001) but caused 23 major (but rarely fatal) extracranial bleeds per 1000. Aspirin (or another oral antiplatelet drug) is protective in most types of patient at increased risk of occlusive vascular events, including those with an acute myocardial infarction or ischaemic stroke, unstable or stable angina, previous myocardial infarction, stroke or cerebral ischaemia, peripheral arterial disease, or atrial fibrillation. Low dose aspirin (75-150 mg daily) is an effective antiplatelet regimen for long term use, but in acute settings an initial loading dose of at least 150 mg aspirin may be required. Adding a second antiplatelet drug to aspirin may produce additional benefits in some clinical circumstances, but more research into this strategy is needed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Type 1 diabetes

            Type 1 diabetes accounts for only about 5-10% of all cases of diabetes; however, its incidence continues to increase worldwide and it has serious short-term and long-term implications. The disorder has a strong genetic component, inherited mainly through the HLA complex, but the factors that trigger onset of clinical disease remain largely unknown. Management of type 1 diabetes is best undertaken in the context of a multidisciplinary health team and requires continuing attention to many aspects, including insulin administration, blood glucose monitoring, meal planning, and screening for comorbid conditions and diabetes-related complications. These complications consist of microvascular and macrovascular disease, which account for the major morbidity and mortality associated with type 1 diabetes. Newer treatment approaches have facilitated improved outcomes in terms of both glycaemic control and reduced risks for development of complications. Nonetheless, major challenges remain in the development of approaches to the prevention and management of type 1 diabetes and its complications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diabetes mellitus: a hypercoagulable state.

              M E Carr (2015)
              Eighty percent of patients with diabetes mellitus die a thrombotic death. Seventy-five percent of these deaths is due to cardiovascular complications, and the remainder is due to cerebrovascular events and peripheral vascular complications. Vascular endothelium, the primary defense against thrombosis, is abnormal in diabetes. Endothelial abnormalities undoubtedly play a role in the enhanced activation of platelets and clotting factors seen in diabetes. Coagulation activation markers, such as prothrombin activation fragment 1+2 and thrombin-anti-thrombin complexes, are elevated in diabetes. The plasma levels of many clotting factors including fibrinogen, factor VII, factor VIII, factor XI, factor XII, kallikrein, and von Willebrand factor are elevated in diabetes. Conversely, the level of the anticoagulant protein C (PC) is decreased. The fibrinolytic system, the primary means of removing clots, is relatively inhibited in diabetes due to abnormal clot structures that are more resistant to degradation and an increase in plasminogen activator inhibitor type 1 (PAI-1). Increased circulating platelet aggregates, increased platelet aggregation in response to platelet agonists, increased platelet contractile force (PCF), and the presence of higher plasma levels of platelet release products, such as beta-thromboglobulin, platelet factor 4, and thromboxane B(2), demonstrate platelet hyperactivity in diabetes. This constellation of findings supports the clinical observation that diabetes is a hypercoagulable state. This article briefly reviews the published evidence for this conclusion and the putative roles played by hyperglycemia and hyperinsulinemia in its development.
                Bookmark

                Author and article information

                Journal
                J Diabetes Res
                J Diabetes Res
                JDR
                Journal of Diabetes Research
                Hindawi Publishing Corporation
                2314-6745
                2314-6753
                2013
                6 June 2013
                : 2013
                : 370212
                Affiliations
                1Australian Centre for Blood Diseases, Alfred Medical Research & Education Precinct (AMREP), Monash University, Melbourne, VIC 3004, Australia
                2Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Ministry of Health, Sichuan University, Chengdu 610041, China
                Author notes

                Academic Editor: Bernard Portha

                Article
                10.1155/2013/370212
                3690249
                23841102
                22b0e81d-2227-4595-8135-6a88f0abcb26
                Copyright © 2013 J. F. Arthur et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 December 2012
                : 7 May 2013
                Funding
                Funded by: 501100001809 National Natural Science Foundation of China
                Award ID: 30930088
                Categories
                Research Article

                Comments

                Comment on this article