16
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cisgenesis and Intragenesis: New tools For Improving Crops

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genetically Modified Organisms (GMO) could be the answer for many relevant problems affecting crops. However, improving crops through GMO is also often associated with safety concerns, environmental risks and health issues due to the presence of foreign DNA. These limitations have prompted the development of alternative technologies. Recently, cisgenesis and intragenesis have been developed as new tools aimed to modify crops. While cisgenesis involves genetic modification using a complete copy of natural genes with their regulatory elements that belong exclusively to sexually compatible plants, intragenesis refers to the transference of new combinations of genes and regulatory sequences belonging to that particular species. So far, application of cisgenesis and intragenesis as alternatives to conventional transgenesis are limited to a few species, mainly due to the lack of knowledge of the regulatory sequences required. The grape is one of the most cultivated crops worldwide and is the most economically relevant crop in Chile. Its genomic sequence has been completed, making available new sources of information to improve grape traits by genetic manipulation. This review is focused on the current alternatives to transgenesis in plants, including new approaches to develop marker-free crops, their application to economically relevant crops and future perspectives in the area. Also, the identification of grapevine promoters with a wide range of expression profiles is shown. The expression pattern of these genes was analyzed in different tissues and developmental stages, as well as under several stresses and stimuli, giving a broad range of expression patterns, including genes expressed exclusively during ripening, in response to sugars, senescence and biotic stress, among others. Genes with strong and constitutive expression were also identified. Functional analysis using reporter genes has been conducted in order to confirm the promoter's transcription activity, opening new possibilities for developing cisgenic/intragenic grapevines.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          GATEWAY vectors for Agrobacterium-mediated plant transformation.

          Agrobacterium tumefaciens is the preferred method for transformation of a wide range of plant species. Commonly, the genes to be transferred are cloned between the left and right T-DNA borders of so-called binary T-DNA vectors that can replicate both in E. coli and Agrobacterium. Because these vectors are generally large, cloning can be time-consuming and laborious. Recently, the GATEWAY conversion technology has provided a fast and reliable alternative to the cloning of sequences into large acceptor plasmids.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development

            Background Accuracy in quantitative real-time RT-PCR is dependent on high quality RNA, consistent cDNA synthesis, and validated stable reference genes for data normalization. Reference genes used for normalization impact the results generated from expression studies and, hence, should be evaluated prior to use across samples and treatments. Few statistically validated reference genes have been reported in grapevine. Moreover, success in isolating high quality RNA from grapevine tissues is typically limiting due to low pH, and high polyphenolic and polysaccharide contents. Results We describe optimization of an RNA isolation procedure that compensates for the low pH found in grape berries and improves the ability of the RNA to precipitate. This procedure was tested on pericarp and seed developmental series, as well as steady-state leaf, root, and flower tissues. Additionally, the expression stability of actin, AP47 (clathrin-associated protein), cyclophilin, EF1-α (elongation factor 1-α), GAPDH (glyceraldehyde 3-phosphate dehydrogenase), MDH (malate dehydrogenase), PP2A (protein phosphatase), SAND, TIP41, α-tubulin, β-tubulin, UBC (ubiquitin conjugating enzyme), UBQ-L40 (ubiquitin L40) and UBQ10 (polyubiquitin) were evaluated on Vitis vinifera cv. Cabernet Sauvignon pericarp using three different statistical approaches. Although several of the genes proved to be relatively stable, no single gene outperformed all other genes in each of the three evaluation methods tested. Furthermore, the effect of using one reference gene versus normalizing to the geometric mean of several genes is presented for the expression of an aquaporin and a sucrose transporter over a developmental series. Conclusion In order to quantify relative transcript abundances accurately using real-time RT-PCR, we recommend that combinations of several genes be used for normalization in grape berry development studies. Our data support GAPDH, actin, EF1-α and SAND as the most relevant reference genes for this purpose.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              White grapes arose through the mutation of two similar and adjacent regulatory genes.

              Most of the thousands of grapevine cultivars (Vitis vinifera L.) can be divided into two groups, red and white, based on the presence or absence of anthocyanin in the berry skin, which has been found from genetic experiments to be controlled by a single locus. A regulatory gene, VvMYBA1, which could activate anthocyanin biosynthesis in a transient assay, was recently shown not to be transcribed in white berries due to the presence of a retrotransposon in the promoter. We have found that the berry colour locus comprises two very similar genes, VvMYBA1 and VvMYBA2, located on a single bacterial artificial chromosome. Either gene can regulate colour in the grape berry. The white berry allele of VvMYBA2 is inactivated by two non-conservative mutations, one leads to an amino acid substitution and the other to a frame shift resulting in a smaller protein. Transient assays showed that either mutation removed the ability of the regulator to switch on anthocyanin biosynthesis. VvMYBA2 sequence analyses, together with marker information, confirmed that 55 white cultivars all contain the white berry allele, but not red berry alleles. These results suggest that all extant white cultivars of grape vines have a common origin. We conclude that rare mutational events occurring in two adjacent genes were essential for the genesis of the white grapes used to produce the white wines and white table grapes we enjoy today.
                Bookmark

                Author and article information

                Journal
                bres
                Biological Research
                Biol. Res.
                Sociedad de Biología de Chile (Santiago, , Chile )
                0716-9760
                2013
                : 46
                : 4
                : 323-331
                Affiliations
                [01] Santiago orgnamePontificia Universidad Católica de Chile orgdiv1Facultad de Ciencias Biológicas orgdiv2Departamento de Genética Molecular y Microbiología Chile parce@ 123456bio.puc.cl
                Article
                S0716-97602013000400003 S0716-9760(13)04600400003
                10.4067/S0716-97602013000400003
                24510134
                22b32a1a-a3f4-4fac-9360-5bf927666660

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 11 November 2013
                : 28 June 2013
                : 11 October 2013
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 71, Pages: 9
                Product

                SciELO Chile

                Categories
                Research Articles

                cisgenesis,VvGRIP24,grapevine promoters,intragenesis
                cisgenesis, VvGRIP24, grapevine promoters, intragenesis

                Comments

                Comment on this article