22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of lncRNAs and Genes Responsible for Fatness and Fatty Acid Composition Traits between the Tibetan and Yorkshire Pigs

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tibetan pigs from the Tibetan Plateau are characterized with a significant phenotypic difference relative to lowland pigs. In this study, a significant difference of the fatness and fatty acid composition traits was observed between the Tibetan and Yorkshire pigs. To uncover the involved mechanism, the expression profile of long noncoding RNAs (lncRNAs) and genes was compared between them. After serial filtered steps, 1,964 lncRNAs were obtained through our computational pipeline. In total, 63 and 715 lncRNAs and genes were identified to be differentially expressed. Evidence from cis- and trans-targeting analysis of lncRNAs demonstrated that some lncRNAs, such as MSTRG.14097 and MSTRG.8034, played important roles in the fatness and fatty acid composition traits. Bioinformatics analysis revealed that many candidate genes were responsible for the two traits. Of these, FASN, ACACA, SCD, ME3, PDHB, ACSS1, ACSS2, and ACLY were identified, which functioned in regulating the level of hexadecanoic acid, hexadecenoic acid, octadecenoic acid, and monounsaturated fatty acid. And LPGAT1, PDK4, ACAA1, and ADIPOQ were associated with the content of stearic acid, octadecadienoic acid, and polyunsaturated fatty acid. Candidate genes, which were responsible for fatness trait, consisted of FGF2, PLAG1, ADIPOQ, IRX3, MIF, IL-34, ADAM8, HMOX1, Vav1, and TLR8. In addition, association analysis also revealed that 34 and 57 genes significantly correlated to the fatness and fatty acid composition trait, respectively. Working out the mechanism caused by these lncRNAs and candidate genes is proven to be complicated but is invaluable to our understanding of fatness and fatty acid composition traits.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Adipocyte-Derived Exosomal MiR-27a Induces Insulin Resistance in Skeletal Muscle Through Repression of PPARγ

          The mechanism by which adipocyte-derived endocrine factors promote insulin resistance in skeletal muscle are not fully understood. MiR-27a is highly expressed in sera of obese individuals with prediabetes and T2DM, and mainly derived by adipose tissues. Thus, miR-27a secreted into circulation by adipose tissue may regulate insulin resistance in skeletal muscle. Methods: The association between miR-27a and insulin resistance in skeletal muscle was determined in obese children, high-fat diet-induced miR-27a knockdown obese mice, db/db mice and C2C12 cells overexpressing miR-27a. The crosstalk mediated by exosomal miR-27a between adipose tissue and skeletal muscle was determined in C2C12 cells incubated with conditioned medium prepared from palmitate-treated 3T3-L1 adipocytes. Results: We showed that serum miR-27a level correlated positively with obesity and insulin resistance in obese children, and that elevated serum miR-27a levels correlated with insulin resistance in leptin receptor-deficient db/db mice, and with obesity and insulin resistance in high-fat diet-fed C57BL/6J mice. MiR-27a released from adipocytes of high-fat diet-fed C57BL/6J mice was associated with triglyceride accumulation. MiR-27a derived from these adipocytes induced insulin resistance in C2C12 skeletal muscle cells through miR-27a-mediated repression of PPARγ and its downstream genes involved in the development of obesity. Conclusions: These results identify a novel crosstalk signaling pathway between adipose tissue and skeletal muscle in the development of insulin resistance, and indicate that adipose tissue-derived miR-27a may play a key role in the development of obesity-triggered insulin resistance in skeletal muscle.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multi-subunit acetyl-CoA carboxylases.

            Acetyl-CoA carboxylase (ACC) catalyses the first committed step of fatty acid synthesis, the carboxylation of acetyl-CoA to malonyl-CoA. Two physically distinct types of enzymes are found in nature. Bacterial and most plant chloroplasts contain a multi-subunit ACC (MS-ACC) enzyme that is readily dissociated into its component proteins. Mammals, fungi, and plant cytosols contain the second type of ACC, a single large multifunctional polypeptide. This review will focus on the structures, regulation, and enzymatic mechanisms of the bacterial and plant MS-ACCs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Genome-wide association study of body fat distribution identifies adiposity loci and sex-specific genetic effects

              Body mass and body fat composition are of clinical interest due to their links to cardiovascular- and metabolic diseases. Fat stored in the trunk has been suggested to be more pathogenic compared to fat stored in other compartments. In this study, we perform genome-wide association studies (GWAS) for the proportion of body fat distributed to the arms, legs and trunk estimated from segmental bio-electrical impedance analysis (sBIA) for 362,499 individuals from the UK Biobank. 98 independent associations with body fat distribution are identified, 29 that have not previously been associated with anthropometric traits. A high degree of sex-heterogeneity is observed and the effects of 37 associated variants are stronger in females compared to males. Our findings also implicate that body fat distribution in females involves mesenchyme derived tissues and cell types, female endocrine tissues as well as extracellular matrix maintenance and remodeling.
                Bookmark

                Author and article information

                Contributors
                Journal
                Int J Genomics
                Int J Genomics
                IJG
                International Journal of Genomics
                Hindawi
                2314-436X
                2314-4378
                2019
                2 June 2019
                : 2019
                : 5070975
                Affiliations
                1Animal Science College, Tibet Agriculture and Animal Husbandry University, Linzhi, Xizang, China
                2College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
                3National Center for Preservation and Utilization of Animal Genetic Resources, National Animal Husbandry Service, Beijing 100193, China
                Author notes

                Guest Editor: Katarzyna Ropka-Molik

                Author information
                http://orcid.org/0000-0003-4337-980X
                http://orcid.org/0000-0003-0982-3364
                Article
                10.1155/2019/5070975
                6589220
                31281828
                22bf4f1c-14e2-47b5-9227-88c7d8d62535
                Copyright © 2019 Peng Shang et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 November 2018
                : 10 February 2019
                : 3 March 2019
                Funding
                Funded by: Foundation of Henan Educational Committee
                Award ID: 19A230006
                Funded by: Natural Science Foundation of Tibet Autonomous Region of China
                Award ID: XZ2017ZRG-33
                Funded by: Key Research and Development & Transformation Program of Tibet Autonomous Region of China
                Award ID: XZ201801NB06
                Categories
                Research Article

                Comments

                Comment on this article