22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Number sense across the lifespan as revealed by a massive Internet-based sample

      , , , ,
      Proceedings of the National Academy of Sciences
      Proceedings of the National Academy of Sciences

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It has been difficult to determine how cognitive systems change over the grand time scale of an entire life, as few cognitive systems are well enough understood; observable in infants, adolescents, and adults; and simple enough to measure to empower comparisons across vastly different ages. Here we address this challenge with data from more than 10,000 participants ranging from 11 to 85 years of age and investigate the precision of basic numerical intuitions and their relation to students' performance in school mathematics across the lifespan. We all share a foundational number sense that has been observed in adults, infants, and nonhuman animals, and that, in humans, is generated by neurons in the intraparietal sulcus. Individual differences in the precision of this evolutionarily ancient number sense may impact school mathematics performance in children; however, we know little of its role beyond childhood. Here we find that population trends suggest that the precision of one's number sense improves throughout the school-age years, peaking quite late at ∼30 y. Despite this gradual developmental improvement, we find very large individual differences in number sense precision among people of the same age, and these differences relate to school mathematical performance throughout adolescence and the adult years. The large individual differences and prolonged development of number sense, paired with its consistent and specific link to mathematics ability across the age span, hold promise for the impact of educational interventions that target the number sense.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures.

          We identified individual-level diurnal and seasonal mood rhythms in cultures across the globe, using data from millions of public Twitter messages. We found that individuals awaken in a good mood that deteriorates as the day progresses--which is consistent with the effects of sleep and circadian rhythm--and that seasonal change in baseline positive affect varies with change in daylength. People are happier on weekends, but the morning peak in positive affect is delayed by 2 hours, which suggests that people awaken later on weekends.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Core knowledge.

            Human cognition is founded, in part, on four systems for representing objects, actions, number, and space. It may be based, as well, on a fifth system for representing social partners. Each system has deep roots in human phylogeny and ontogeny, and it guides and shapes the mental lives of adults. Converging research on human infants, non-human primates, children and adults in diverse cultures can aid both understanding of these systems and attempts to overcome their limits.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Developmental change in the acuity of the "Number Sense": The Approximate Number System in 3-, 4-, 5-, and 6-year-olds and adults.

              Behavioral, neuropsychological, and brain imaging research points to a dedicated system for processing number that is shared across development and across species. This foundational Approximate Number System (ANS) operates over multiple modalities, forming representations of the number of objects, sounds, or events in a scene. This system is imprecise and hence differs from exact counting. Evidence suggests that the resolution of the ANS, as specified by a Weber fraction, increases with age such that adults can discriminate numerosities that infants cannot. However, the Weber fraction has yet to be determined for participants of any age between 9 months and adulthood, leaving its developmental trajectory unclear. Here we identify the Weber fraction of the ANS in 3-, 4-, 5-, and 6-year-old children and in adults. We show that the resolution of this system continues to increase throughout childhood, with adultlike levels of acuity attained surprisingly late in development.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                July 10 2012
                July 10 2012
                June 25 2012
                July 10 2012
                : 109
                : 28
                : 11116-11120
                Article
                10.1073/pnas.1200196109
                3396479
                22733748
                22c92fc8-3b72-49e4-9d98-c6dc8bb67712
                © 2012
                History

                Comments

                Comment on this article