26
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Serodiagnosis of Zika virus (ZIKV) infections by a novel NS1-based ELISA devoid of cross-reactivity with dengue virus antibodies: a multicohort study of assay performance, 2015 to 2016

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Serological diagnosis of Zika virus (ZIKV) infections is challenging due to high cross-reactivity between flaviviruses. We evaluated the diagnostic performance of a novel anti-ZIKV ELISA based on recombinant ZIKV non-structural protein 1 (NS1). Assay sensitivity was examined using sera from 27 patients with reverse transcription (RT)-PCR-confirmed and 85 with suspected ZIKV infection. Specificity was analysed using sera from 1,015 healthy individuals. Samples from 252 patients with dengue virus (n = 93), West Nile virus (n = 34), Japanese encephalitis virus (n = 25), chikungunya virus (n = 19) or Plasmodium spp. (n = 69) infections and from 12 yellow fever-vaccinated individuals were also examined. In confirmed ZIKV specimens collected ≥ 6 days after symptom onset, ELISA sensitivity was 58.8% (95% confidence interval (CI): 36.0–78.4) for IgM, 88.2% (95% CI: 64.4–98.0) for IgG, and 100% (95% CI: 78.4–100) for IgM/IgG, at 99.8% (95% CI: 99.2–100) specificity. Cross-reactivity with high-level dengue virus antibodies was not detected. Among patients with potentially cross-reactive antibodies anti-ZIKV positive rates were 0.8% (95% CI: 0–3.0) and 0.4% (95% CI: 0–2.4) for IgM and IgG, respectively. Providing high specificity and low cross-reactivity, the NS1-based ELISA has the potential to aid in counselling patients, pregnant women and travellers after returning from ZIKV-endemic areas.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          The flavivirus NS1 protein: molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker.

          The flavivirus nonstructural glycoprotein NS1 is an enigmatic protein whose structure and mechanistic function have remained somewhat elusive ever since it was first reported in 1970 as a viral antigen circulating in the sera of dengue-infected patients. All flavivirus NS1 genes share a high degree of homology, encoding a 352-amino-acid polypeptide that has a molecular weight of 46-55 kDa, depending on its glycosylation status. NS1 exists in multiple oligomeric forms and is found in different cellular locations: a cell membrane-bound form in association with virus-induced intracellular vesicular compartments, on the cell surface and as a soluble secreted hexameric lipoparticle. Intracellular NS1 co-localizes with dsRNA and other components of the viral replication complex and plays an essential cofactor role in replication. Although this makes NS1 an ideal target for inhibitor design, the precise nature of its cofactor function has yet to be elucidated. A plethora of potential interacting partners have been identified, particularly for the secreted form of NS1, with many being implicated in immune evasion strategies. Secreted and cell-surface-associated NS1 are highly immunogenic and both the proteins themselves and the antibodies they elicit have been implicated in the seemingly contradictory roles of protection and pathogenesis in the infected host. Finally, NS1 is also an important biomarker for early diagnosis of disease. In this article, we provide an overview of these somewhat disparate areas of research, drawing together the wealth of data generated over more than 40 years of study of this fascinating protein. Copyright © 2013 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Enzyme-linked immunosorbent assay specific to Dengue virus type 1 nonstructural protein NS1 reveals circulation of the antigen in the blood during the acute phase of disease in patients experiencing primary or secondary infections.

            During flavivirus infection in vitro, nonstructural protein NS1 is released in a host-restricted fashion from infected mammalian cells but not vector-derived insect cells. In order to analyze the biological relevance of NS1 secretion in vivo, we developed a sensitive enzyme-linked immunosorbent assay (ELISA) to detect the protein in the sera of dengue virus-infected patients. The assay was based on serotype 1 NS1-specific mouse and rabbit polyclonal antibody preparations for antigen immunocapture and detection, respectively. With purified dengue virus type 1 NS1 as a protein standard, the sensitivity of our capture ELISA was less than 1 ng/ml. When a panel of patient sera was analyzed, the NS1 antigen was found circulating from the first day after the onset of fever up to day 9, once the clinical phase of the disease is over. The NS1 protein could be detected even when viral RNA was negative in reverse transcriptase-PCR or in the presence of immunoglobulin M antibodies. NS1 circulation levels varied among individuals during the course of the disease, ranging from several nanograms per milliliter to several micrograms per milliliter, and peaked in one case at 50 microg/ml of serum. Interestingly, NS1 concentrations did not differ significantly in serum specimens obtained from patients experiencing primary or secondary dengue virus infections. These findings indicate that NS1 protein detection may allow early diagnosis of infection. Furthermore, NS1 circulation in the bloodstream of patients during the clinical phase of the disease suggests a contribution of the nonstructural protein to dengue virus pathogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Notes from the Field: Evidence of Zika Virus Infection in Brain and Placental Tissues from Two Congenitally Infected Newborns and Two Fetal Losses--Brazil, 2015.

              Zika virus is a mosquito-borne flavivirus that is related to dengue virus and transmitted primarily by Aedes aegypti mosquitoes, with humans acting as the principal amplifying host during outbreaks. Zika virus was first reported in Brazil in May 2015 (1). By February 9, 2016, local transmission of infection had been reported in 26 countries or territories in the Americas.* Infection is usually asymptomatic, and, when symptoms are present, typically results in mild and self-limited illness with symptoms including fever, rash, arthralgia, and conjunctivitis. However, a surge in the number of children born with microcephaly was noted in regions of Brazil with a high prevalence of suspected Zika virus disease cases. More than 4,700 suspected cases of microcephaly were reported from mid-2015 through January 2016, although additional investigations might eventually result in a revised lower number (2). In response, the Brazil Ministry of Health established a task force to further investigate possible connections between the virus and brain anomalies in infants (3).
                Bookmark

                Author and article information

                Journal
                Euro Surveill
                Euro Surveill
                ES
                Eurosurveillance
                European Centre for Disease Prevention and Control (ECDC)
                1025-496X
                1560-7917
                15 December 2016
                : 21
                : 50
                : 30426
                Affiliations
                [1 ]Institute for Experimental Immunology, EUROIMMUN AG, Lübeck, Germany
                [2 ]WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
                [3 ]German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel, Hamburg, Germany
                [4 ]National Reference Center for Arboviruses, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
                [5 ]Department of Medical Microbiology, Section of Clinical Virology, Academic Medical Center, Public Health Service, Amsterdam, the Netherlands
                [6 ]Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
                [7 ]Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
                Author notes

                Correspondence: Wolfgang Schlumberger ( w.schlumberger@ 123456euroimmun.de )

                Article
                16-00480 30426
                10.2807/1560-7917.ES.2016.21.50.30426
                5291135
                28006649
                22cd1505-6ba1-49e5-8573-4d83603c5993
                This article is copyright of The Authors, 2016.

                This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0) Licence. You may share and adapt the material, but must give appropriate credit to the source, provide a link to the licence, and indicate if changes were made.

                History
                : 14 July 2016
                : 05 October 2016
                Categories
                Research Article

                zika virus,non-structural protein 1,ns1,antibody,elisa,infection

                Comments

                Comment on this article