Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Current Status of Laboratory Diagnosis for COVID-19: A Narrative Review

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the related disease (COVID-19) has spread rapidly to pandemic proportions, increasing the demands on healthcare systems for the containment and management of COVID-19. One of the critical issues to be addressed is the improvement in laboratory diagnosis and screening of large portions of the population to stop the virus spreading. Currently, the laboratory diagnosis of SARS-CoV-2 infection and the related disease is based on the research of viral RNA with rt-PCR methods in upper and lower respiratory airways. Serological tests to detect SARS-CoV-2 antibodies could help physicians and healthcare workers to support COVID-19 diagnosis and follow-up and perform population screening. Our review, using MEDLINE and EMBASE, summarizes the current knowledge of direct and serological tests performed to research RNA, antigens, or antibodies for SARS-CoV-2, evaluating the advantages and drawbacks for specific tests.

          Related collections

          Most cited references 15

          • Record: found
          • Abstract: found
          • Article: not found

          Coronavirus particle assembly: primary structure requirements of the membrane protein.

          Coronavirus-like particles morphologically similar to normal virions are assembled when genes encoding the viral membrane proteins M and E are coexpressed in eukaryotic cells. Using this envelope assembly assay, we have studied the primary sequence requirements for particle formation of the mouse hepatitis virus (MHV) M protein, the major protein of the coronavirion membrane. Our results show that each of the different domains of the protein is important. Mutations (deletions, insertions, point mutations) in the luminal domain, the transmembrane domains, the amphiphilic domain, or the carboxy-terminal domain had effects on the assembly of M into enveloped particles. Strikingly, the extreme carboxy-terminal residue is crucial. Deletion of this single residue abolished particle assembly almost completely; most substitutions were strongly inhibitory. Site-directed mutations in the carboxy terminus of M were also incorporated into the MHV genome by targeted recombination. The results supported a critical role for this domain of M in viral assembly, although the M carboxy terminus was more tolerant of alteration in the complete virion than in virus-like particles, likely because of the stabilization of virions by additional intermolecular interactions. Interestingly, glycosylation of M appeared not essential for assembly. Mutations in the luminal domain that abolished the normal O glycosylation of the protein or created an N-glycosylated form had no effect. Mutant M proteins unable to form virus-like particles were found to inhibit the budding of assembly-competent M in a concentration-dependent manner. However, assembly-competent M was able to rescue assembly-incompetent M when the latter was present in low amounts. These observations support the existence of interactions between M molecules that are thought to be the driving force in coronavirus envelope assembly.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Performance of VivaDiag COVID‐19 IgM/IgG Rapid Test is inadequate for diagnosis of COVID‐19 in acute patients referring to emergency room department

            To the Editor, From late December 2019, coronavirus infectious disease (COVID‐19) epidemics spread from Wuhan, China, to all over the world, including Italy. 1 , 2 , 3 To date, real‐time reverse transcription‐polymerase chain reaction (RT‐PCR) in respiratory samples is the current gold standard method for the diagnosis of COVID‐19. 4 , 5 However, molecular testings are time consuming and require specialized operators, factors that limit their use in real life when the rapid diagnosis is required for fast intervention decisions. Recently, an easy to perform serological assay has been assessed 6 to differentiate COVID‐19 positive patients from negative subjects. We herein report results of a real‐life study performed in an emergency room department of a tertiary hospital in Northern Italy to validate VivaDiag COVID‐19 IgM/IgG Rapid Test lateral flow immunoassay (LFIA) for the rapid diagnosis of COVID‐19. Overall 110 subjects were tested for COVID‐19‐specific serological assay at Fondazione IRCCS Policlinico San Matteo. In detail, we enrolled 30 healthy volunteers with documented negative results for COVID‐19 RT‐PCR in respiratory samples (M 11/F 19; median age, 38.5; range, 25‐69 years). Ten of them (33.3%) had been infected in the past with one of the common OC43, 229E, HKU1, and NL63 coronavirus. Thirty COVID‐19‐positive patients (25 M/5 F; median age, 73.5; range, 38‐86 years) admitted to the Infectious Diseases Department or at the Intensive Care Unit were tested as positive controls. Finally, the performance of VivaDiag COVID‐19 IgM/IgG Rapid Test LFIA was tested in 50 patients at their first access at emergency room department with fever and respiratory syndrome (34 M/16 F; median age, 61.50; range, 33‐97 years) in comparison with results of nasal swab molecular screening. 5 VivaDiag COVID‐19 IgM/IgG from VivaChek was performed according to manufacturer's instruction by adding 10 µL of serum or whole blood sample into the sample port followed by adding 2 to 3 drops (70‐100 µL) of dilution buffer. 6 After about 15 minutes, results were read. Respiratory samples (FLOQSwabs; Copan Italia, Brescia, Italy) were collected from all the patients. Total nucleic acids (DNA/RNA) were extracted from 200 µL of UTM using the QIAsymphony instrument with QIAsymphony DSP Virus/Pathogen Midi Kit (complex 400 protocols) according to the manufacturer's instructions (QIAGEN; Qiagen, Hilden, Germany). Specific real‐time RT‐PCR targeting RNA‐dependent RNA polymerase and E genes were used to detect the presence of SARS‐CoV‐2 according to the WHO guidelines 7 and Corman et al 5 protocols. In the cohort of patients admitted to the emergency room department, data from serological tests were compared to molecular results to define specificity, sensitivity, positive predictive value (PPV), and negative predictive value (NPV) of the rapid serological test. As expected, all 30 COVID‐19 negative volunteers were negative for both immunoglobulin G (IgG) and immunoglobulin M (IgM) using the VivaDiag COVID‐19 IgM/IgG Rapid Test. No cross‐reactivity was detected in the 10 subjects with previous coronaviruses infection, supporting the high specificity of the VivaDiag COVID‐19 IgM/IgG Rapid Test LFIA. Serum samples were obtained at a median 7 days (interquartile range, 4‐11) after the first COVID‐19 positive result from 30 hospitalized patients. A total of 19 of 30 (63.3%) were positive for both IgM and IgG, 5 of 30 (16.7%) were negative for both IgG and IgM, 5 of 30 (16.7%) were weakly positive for both IgM and IgG, and only 1 of 30 (3.3%) was positive for IgM and negative for IgG. Thus, the sensitivity of the rapid assay was suboptimal (data not are shown). A possible explanation is the low antibody titers or a delayed humoral response. 6 Focusing on acute patients enrolled from the emergency room department, 12 of 50 (24%) were negative for COVID‐19 by real‐time RT‐PCR. Of these, 1 (8.3%) showed a positive results for the VivaDiag COVID‐19 IgM/IgG Rapid Test, while the other 11 of 12 (91.7%) tested negative. On the other side, 38 patients were positive for COVID‐19 by real‐time RT‐PCR. Of these, only 7 (18.4%) showed a positive or weak positive serology for IgM and/or IgG, while the other 31 of 38 (81.6%) tested negative for the rapid serology assay (Table 1). Thus, the sensitivity of the VivaDiag COVID‐19 IgM/IgG Rapid Test was 18.4%, specificity was 91.7%, while NPV was 26.2%, and PPV was 87.5% in patients enrolled from emergency room department. In contrast with the high levels of sensitivity reported in the previous study, 6 VivaDiag COVID‐19 IgM/IgG Rapid Test revealed a very poor sensitivity (less than 20%). Indeed, the majority of patients that tested positive for COVID‐19 by real‐time RT‐PCR would have been identified as negative using only the rapid serological assay, leading to a misdiagnosis of COVID‐19 disease in the vast majority of patients. On the basis of our results, VivaDiag COVID‐19 IgM/IgG Rapid Test LFIA is not recommended for triage of patients with suspected COVID‐19. Table 1 Characteristics and VivaDiag COVID‐19 IgM/IgG Rapid Test results of 50 consecutive patients referred to the emergency room department Patient Sex Age Result of COVID‐19 real‐time RT‐PCR on NS VivaDiag COVID‐19 IgM/IgG Rapid Test IgM IgG 1 M 33 neg − − 2 M 51 pos − − 3 M 51 pos − − 4 M 38 pos − − 5 F 80 pos − − 6 F 64 neg − − 7 M 81 neg − − 8 M 76 pos +/− − 9 M 33 pos − − 10 M 37 neg − − 11 F 45 pos − − 12 M 53 pos − − 13 M 66 neg − − 14 M 78 pos − − 15 F 97 pos − − 16 M 38 pos − − 17 M 72 pos − − 18 M 56 pos − − 19 M 80 pos − +/− 20 M 72 pos − − 21 F 55 pos − − 22 M 82 pos − − 23 M 47 pos + +/− 24 F 63 pos − − 25 F 80 pos +/− − 26 M 59 pos − − 27 M 66 pos − − 28 M 39 pos − − 29 F 78 neg − − 30 M 71 neg − − 31 F 46 neg − − 32 F 51 pos − − 33 F 75 pos − − 34 F 82 pos + +/− 35 F 51 pos +/− +/− 36 M 84 pos − − 37 M 50 pos − − 38 M 50 pos + +/− 39 F 72 neg − − 40 M 54 neg − − 41 F 64 neg + − 42 M 64 pos − − 43 M 70 pos − − 44 M 56 pos − − 45 M 68 pos − − 46 F 36 pos − − 47 M 60 pos − − 48 M 66 pos − − 49 M 54 neg − − 50 M 56 pos − − Abbreviations: −, negative result; +, positive result; +/−, weakly positive result; COVID‐19, coronavirus infectious disease 2019; IgG, immunoglobulin G; IgM, immunoglobulin M; NS, nasopharyngeal swab; RT‐PCR, reverse transcription‐polymerase chain reaction. John Wiley & Sons, Ltd. This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency. MEMBERS OF THE SAN MATTEO PAVIA COVID‐19 TASK FORCE R. Bruno, M. Mondelli, E. Brunetti, A. Di Matteo, E. Seminari, L. Maiocchi, V. Zuccaro, L. Pagnucco, B. Mariani, S. Ludovisi, R. Lissandrin, A. Parisi, P. Sacchi, S. F. A. Patruno, G. Michelone, R. Gulminetti, D. Zanaboni, S. Novati, R. Maserati, P. Orsolini, and M. Vecchia (ID Staff); M. Sciarra, E. Asperges, M. Colaneri, A. Di Filippo, M. Sambo, S. Biscarini, M. Lupi, S. Roda, T. C. Pieri, I. Gallazzi, M. Sachs, and P. Valsecchi (ID Resident); S. Perlini, C. Alfano, M. Bonzano, F. Briganti, G. Crescenzi, A. G. Falchi, R. Guarnone, B. Guglielmana, E. Maggi, I. Martino, P. Pettenazza, S. Pioli di Marco, F. Quaglia, A. Sabena, F. Salinaro, F. Speciale, and I. Zunino (ECU Staff Emergency Care Unit); M. De Lorenzo, G. Secco, L. Dimitry, G. Cappa, I. Maisak, B. Chiodi, M. Sciarrini, B. Barcella, F. Resta, L. Moroni, G. Vezzoni, L. Scattaglia, E. Boscolo, C. Zattera, M. F. Tassi, V. Capozza, D. Vignaroli, and M. Bazzini (ECU Resident Emergency Care Unit); G. Iotti, F. Mojoli, M. Belliato, L. Perotti, S. Mongodi, and G. Tavazzi (Intensive Care Unit); G. Marseglia, A. Licari, and I. Brambilla (Pediatric Unit); D. Barbarini, A. Bruno, P. Cambieri, G. Campanini, G. Comolli, M. Corbella, R. Daturi, M. Furione, B. Mariani, R. Maserati, E. Monzillo, S. Paolucci, M. Parea, E. Percivalle, A. Piralla, F. Rovida, A. Sarasini, and M. Zavattoni (Virology Staff); G. Adzasehoun, L. Bellotti, E. Cabano, G. Casali, L. Dossena, G. Frisco, G. Garbagnoli, A. Girello, V. Landini, C. Lucchelli, V. Maliardi, S. Pezzaia, and M. Premoli (Virology Technical staff); A. Bonetti, G. Caneva, I. Cassaniti, A. Corcione, R. Di Martino, A. Di Napoli, A. Ferrari, G. Ferrari, L. Fiorina, F. Giardina, A. Mercato, F. Novazzi, G. Ratano, B. Rossi, I. M. Sciabica, M. Tallarita, and E. Vecchio Nepita (Virology Resident); M. Calvi and M. Tizzoni (Pharmacy Unit); and C. Nicora, A. Triarico, V. Petronella, C. Marena, A. Muzzi, and P. Lago (Hospital Management). CONFLICT OF INTERESTS The authors declare that there are no conflict of interests. AUTHOR CONTRIBUTIONS IC, FN, FG, FS, MS, SP, RB, FM, FB, and the other members of the San Matteo Pavia COVID‐19 Task Force listed reviewed and approved the manuscript. IC and FN discussed results, data analysis, and wrote the paper. FG, FS, and MS collected the samples. SP, RB, and FM discussed results. FB conceived the study.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              The transmission and diagnosis of 2019 novel coronavirus infection disease (COVID‐19): A Chinese perspective

               Yu Han,  Hailan Yang (2020)
              Abstract 2019 novel coronavirus (SARS‐CoV‐2), which originated in Wuhan, China, has attracted the world's attention over the last month. The Chinese government has taken emergency measures to control the outbreak and has undertaken initial steps in the diagnosis and treatment of 2019 novel coronavirus infection disease (COVID‐19). However, SARS‐CoV‐2 possesses powerful pathogenicity as well as transmissibility and still holds many mysteries that are yet to be solved, such as whether the virus can be transmitted by asymptomatic patients or by mothers to their infants. Our research presents selected available cases of COVID‐19 in China to better understand the transmission and diagnosis regarding this infectious disease.
                Bookmark

                Author and article information

                Journal
                Infect Drug Resist
                Infect Drug Resist
                idr
                idr
                Infection and Drug Resistance
                Dove
                1178-6973
                03 August 2020
                2020
                : 13
                : 2657-2665
                Affiliations
                [1 ]Department of Mental Health and Public Medicine, Infectious Diseases Unit, University of Campania Luigi Vanvitelli , Naples, Italy
                Author notes
                Correspondence: Nicola Coppola Department of Mental Health and Public Medicine, Infectious Diseases Unit, University of Campania Luigi Vanvitelli , Via: L. Armanni 5, Naples80131, ItalyTel +39 0815666719Fax +39 0815666013 Email nicola.coppola@unicampania.it
                Article
                264020
                10.2147/IDR.S264020
                7413717
                © 2020 Russo et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                Page count
                Figures: 0, Tables: 8, References: 74, Pages: 9
                Categories
                Review

                Infectious disease & Microbiology

                pcr, covid-19, serological test, laboratory diagnosis, sars-cov-2

                Comments

                Comment on this article