29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transforming growth factor-β, insulin-like growth factor I/insulin-like growth factor I receptor and vascular endothelial growth factor-A: Prognostic and predictive markers in triple-negative and non-triple-negative breast cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the current study, the prognostic and predictive values of serum transforming growth factor-β1 (TGF-β1), insulin-like growth factor I (IGF-I)/IGF-I receptor (IGF-IR) and vascular endothelial growth factor-A (VEGF-A) were evaluated in triple-negative and non-triple-negative breast cancer (TNBC and non-TNBC). The aim was to identify a group of serological biomarkers and to identify possible candidates for targeted therapy in patients with TNBC and non-TNBC. Protein levels of TGF-β1, IGF-I/IGF-IR and VEGF-A in the serum were measured in 43 TNBC, 53 non-TNBC and 20 normal control participants using quantitative ELISA assays. Results were correlated against standard prognostic factors, response to treatment and survival. TNBC was identified to be associated with poor prognosis and serum levels of VEGF-A and IGF/IGF-IR were significantly higher in the TNBC group compared with the non-TNBC group. IGF-IR and VEGF-A overexpression was observed to be correlated with TGF-β1 expression and all of the markers investigated were associated with metastasis and disease progression. In the multivariate analysis, VEGF-A, IGF-I and IGF-IR were observed to be independent predictors for overall survival, whereas TGF-β1 and lymph node status were identified as independent predictors for disease-free survival. The overall response rate was significantly lower in patients with TNBC and those with high levels of TGF-β1, IGF-I/IGF-IR and VEGF-A. In view of the present results, it was concluded that TGF-β1, IGF-I/IGF-IR and VEGF-A overexpression is associated with the presence of aggressive tumors, which exhibit an increased probability of metastasis, a poor response to treatment and reduced survival rate. This indicates that VEGF-A, IGF-IR and IGF-I have the potential to be used as surrogate biomarkers and are promising candidates for targeted therapy, particularly in patients with TNBC.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: not found
          • Article: not found

          Insulin-like growth factors and neoplasia.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway.

            TGF-beta can signal by means of Smad transcription factors, which are quintessential tumor suppressors that inhibit cell proliferation, and by means of Smad-independent mechanisms, which have been implicated in tumor progression. Although Smad mutations disable this tumor-suppressive pathway in certain cancers, breast cancer cells frequently evade the cytostatic action of TGF-beta while retaining Smad function. Through immunohistochemical analysis of human breast cancer bone metastases and functional imaging of the Smad pathway in a mouse xenograft model, we provide evidence for active Smad signaling in human and mouse bone-metastatic lesions. Genetic depletion experiments further demonstrate that Smad4 contributes to the formation of osteolytic bone metastases and is essential for the induction of IL-11, a gene implicated in bone metastasis in this mouse model system. Activator protein-1 is a key participant in Smad-dependent transcriptional activation of IL-11 and its overexpression in bone-metastatic cells. Our findings provide functional evidence for a switch of the Smad pathway, from tumor-suppressor to prometastatic, in the development of breast cancer bone metastasis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular biology of bone metastasis.

              Metastasis is a final stage of tumor progression. Breast and prostate cancer cells preferentially metastasize to bone, wherein they cause incurable osteolytic and osteoblastic lesions. The bone matrix is rich in factors, such as transforming growth factor-beta and insulin-like growth factors, which are released into the tumor microenvironment by osteolysis. These factors stimulate the growth of tumor cells and alter their phenotype, thus promoting a vicious cycle of metastasis and bone pathology. Physical factors within the bone microenvironment, including low oxygen levels, acidic pH, and high extracellular calcium concentrations, may also enhance tumor growth. These elements of the microenvironment are potential targets for chemotherapeutic intervention to halt tumor growth and suppress bone metastasis.
                Bookmark

                Author and article information

                Journal
                Mol Med Rep
                Mol Med Rep
                Molecular Medicine Reports
                D.A. Spandidos
                1791-2997
                1791-3004
                July 2015
                27 March 2015
                27 March 2015
                : 12
                : 1
                : 851-864
                Affiliations
                [1 ]Molecular Pathology Unit, Pathology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt
                [2 ]Department of Biochemistry, Faculty of Pharmacy, Misr University for Science and Technology, Cairo 11796, Egypt
                [3 ]Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo 11796, Egypt
                [4 ]Faculty of Pharmacy, National Cancer Institute, Cairo University, Cairo 11796, Egypt
                [5 ]Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo 11796, Egypt
                Author notes
                Correspondence to: Professor Abeer Bahnassy, Molecular Pathology Unit, Pathology Department, National Cancer Institute, Cairo University, 1 Fom El-Khalig Street, Cairo 11796, Egypt, E-mail: chaya2000@ 123456hotmail.com
                Article
                mmr-12-01-0851
                10.3892/mmr.2015.3560
                4438878
                25824321
                22d8e9f2-193f-4198-82fb-d63507d691b1
                Copyright © 2015, Spandidos Publications

                This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.

                History
                : 28 May 2014
                : 15 January 2015
                Categories
                Articles

                triple-negative breast cancer, transforming growth factor-β,insulin growth factor/insulin growth factor receptor i,vascular endothelial growth factor,prognosis

                Comments

                Comment on this article