48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Population Trend of the World’s Monitored Seabirds, 1950-2010

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Seabird population changes are good indicators of long-term and large-scale change in marine ecosystems, and important because of their many impacts on marine ecosystems. We assessed the population trend of the world’s monitored seabirds (1950–2010) by compiling a global database of seabird population size records and applying multivariate autoregressive state-space (MARSS) modeling to estimate the overall population trend of the portion of the population with sufficient data (i.e., at least five records). This monitored population represented approximately 19% of the global seabird population. We found the monitored portion of the global seabird population to have declined overall by 69.7% between 1950 and 2010. This declining trend may reflect the global seabird population trend, given the large and apparently representative sample. Furthermore, the largest declines were observed in families containing wide-ranging pelagic species, suggesting that pan-global populations may be more at risk than shorter-ranging coastal populations.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: not found

          Cascading top-down effects of changing oceanic predator abundances.

          1. Top-down control can be an important determinant of ecosystem structure and function, but in oceanic ecosystems, where cascading effects of predator depletions, recoveries, and invasions could be significant, such effects had rarely been demonstrated until recently. 2. Here we synthesize the evidence for oceanic top-down control that has emerged over the last decade, focusing on large, high trophic-level predators inhabiting continental shelves, seas, and the open ocean. 3. In these ecosystems, where controlled manipulations are largely infeasible, 'pseudo-experimental' analyses of predator-prey interactions that treat independent predator populations as 'replicates', and temporal or spatial contrasts in predator populations and climate as 'treatments', are increasingly employed to help disentangle predator effects from environmental variation and noise. 4. Substantial reductions in marine mammals, sharks, and piscivorous fishes have led to mesopredator and invertebrate predator increases. Conversely, abundant oceanic predators have suppressed prey abundances. Predation has also inhibited recovery of depleted species, sometimes through predator-prey role reversals. Trophic cascades have been initiated by oceanic predators linking to neritic food webs, but seem inconsistent in the pelagic realm with effects often attenuating at plankton. 5. Top-down control is not uniformly strong in the ocean, and appears contingent on the intensity and nature of perturbations to predator abundances. Predator diversity may dampen cascading effects except where nonselective fisheries deplete entire predator functional groups. In other cases, simultaneous exploitation of predator and prey can inhibit prey responses. Explicit consideration of anthropogenic modifications to oceanic foodwebs should help inform predictions about trophic control. 6. Synthesis and applications. Oceanic top-down control can have important socio-economic, conservation, and management implications as mesopredators and invertebrates assume dominance, and recovery of overexploited predators is impaired. Continued research aimed at integrating across trophic levels is needed to understand and forecast the ecosystem effects of changing oceanic predator abundances, the relative strength of top-down and bottom-up control, and interactions with intensifying anthropogenic stressors such as climate change.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ecosystem consequences of bird declines.

            We present a general framework for characterizing the ecological and societal consequences of biodiversity loss and applying it to the global avifauna. To investigate the potential ecological consequences of avian declines, we developed comprehensive databases of the status and functional roles of birds and a stochastic model for forecasting change. Overall, 21% of bird species are currently extinction-prone and 6.5% are functionally extinct, contributing negligibly to ecosystem processes. We show that a quarter or more of frugivorous and omnivorous species and one-third or more of herbivorous, piscivorous, and scavenger species are extinction-prone. Furthermore, our projections indicate that by 2100, 6-14% of all bird species will be extinct, and 7-25% (28-56% on oceanic islands) will be functionally extinct. Important ecosystem processes, particularly decomposition, pollination, and seed dispersal, will likely decline as a result.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prehistoric extinctions of pacific island birds: biodiversity meets zooarchaeology.

              On tropical Pacific islands, a human-caused "biodiversity crisis" began thousands of years ago and has nearly run its course. Bones identified from archaeological sites show that most species of land birds and populations of seabirds on those islands were exterminated by prehistoric human activities. The loss of birdlife in the tropical Pacific may exceed 2000 species (a majority of which were species of flightless rails) and thus represents a 20 percent worldwide reduction in the number of species of birds. The current global extinction crisis therefore has historic precedent.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                9 June 2015
                2015
                : 10
                : 6
                : e0129342
                Affiliations
                [1 ]University of British Columbia, Vancouver, British Columbia, Canada
                [2 ]School of the Environment, University of Technology, Sydney, Ultimo, New South Wales, 2007, Australia
                University of Toronto, CANADA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MP EH DP. Performed the experiments: EH MP. Analyzed the data: EH MP. Contributed reagents/materials/analysis tools: MP VK. Wrote the paper: MP EH.

                Article
                PONE-D-13-05286
                10.1371/journal.pone.0129342
                4461279
                26058068
                22dff899-d100-485b-954a-c2f0b8239ae5
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 5 February 2013
                : 7 May 2015
                Page count
                Figures: 4, Tables: 1, Pages: 11
                Funding
                This work was supported by the Sea Around Us project, a collaboration between the University of British Columbia and the Pew Environment Group. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article