19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Graphene Plasmonic Metasurfaces to Steer Infrared Light

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Metasurfaces utilizing engineered metallic nanostructures have recently emerged as an important means to manipulate the propagation of light waves in a prescribed manner. However, conventional metallic metasurfaces mainly efficiently work in the visible and near-infrared regime, and lack sufficient tunability. In this work, combining the pronounced plasmonic resonance of patterned graphene structures with a subwavelength-thick optical cavity, we propose and demonstrate novel graphene metasurfaces that manifest the potential to dynamically control the phase and amplitude of infrared light with very high efficiency. It is shown that the phase of the infrared light reflected from a simple graphene ribbon metasurface can span over almost the entire 2π range by changing the width of the graphene ribbons, while the amplitude of the reflection can be maintained at high values without significant variations. We successfully realize anomalous reflection, reflective focusing lenses, and non-diffracting Airy beams based on graphene metasurfaces. Our results open up a new paradigm of highly integrated photonic platforms for dynamic beam shaping and adaptive optics in the crucial infrared wavelength range.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Electric Field Effect in Atomically Thin Carbon Films

          We report a naturally-occurring two-dimensional material (graphene that can be viewed as a gigantic flat fullerene molecule, describe its electronic properties and demonstrate all-metallic field-effect transistor, which uniquely exhibits ballistic transport at submicron distances even at room temperature.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Two Dimensional Atomic Crystals

            We report free-standing atomic crystals that are strictly 2D and can be viewed as individual atomic planes pulled out of bulk crystals or as unrolled single-wall nanotubes. By using micromechanical cleavage, we have prepared and studied a variety of 2D crystals, including single layers of boron nitride, graphite, several dichalcogenides and complex oxides. These atomically-thin sheets (essentially gigantic 2D molecules unprotected from the immediate environment) are stable under ambient conditions, exhibit high crystal quality and are continuous on a macroscopic scale.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metamaterials and negative refractive index.

              Recently, artificially constructed metamaterials have become of considerable interest, because these materials can exhibit electromagnetic characteristics unlike those of any conventional materials. Artificial magnetism and negative refractive index are two specific types of behavior that have been demonstrated over the past few years, illustrating the new physics and new applications possible when we expand our view as to what constitutes a material. In this review, we describe recent advances in metamaterials research and discuss the potential that these materials may hold for realizing new and seemingly exotic electromagnetic phenomena.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                23 July 2015
                2015
                : 5
                : 12423
                Affiliations
                [1 ]Department of Mechanical and Industrial Engineering, Northeastern University , Boston, Massachusetts 02115, United States
                [2 ]Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Applied Physics Institute & School of Physics, Nankai University , Tianjin 300457, China
                [3 ]Department of Electrical and Computer Engineering, Northeastern University , Boston, Massachusetts 02115, United States
                [4 ]Department of Electrical Engineering, Yale University , New Haven, Connecticut 06511, United States
                [5 ]Department of Mechanical Engineering, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
                Author notes
                Article
                srep12423
                10.1038/srep12423
                5378890
                26201677
                22e3529e-8fae-456f-9fc3-e400d25b5bfe
                Copyright © 2015, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 15 April 2015
                : 23 June 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article