Blog
About

44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Candidate Genes Expression Profile Associated with Antidepressants Response in the GENDEP Study: Differentiating between Baseline ‘Predictors' and Longitudinal ‘Targets'

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To improve the ‘personalized-medicine' approach to the treatment of depression, we need to identify biomarkers that, assessed before starting treatment, predict future response to antidepressants (‘predictors'), as well as biomarkers that are targeted by antidepressants and change longitudinally during the treatment (‘targets'). In this study, we tested the leukocyte mRNA expression levels of genes belonging to glucocorticoid receptor (GR) function ( FKBP-4, FKBP-5, and GR), inflammation ( interleukin (IL)-1α, IL-1β, IL-4, IL-6, IL-7, IL-8, IL-10, macrophage inhibiting factor (MIF), and tumor necrosis factor (TNF)-α), and neuroplasticity ( brain-derived neurotrophic factor (BDNF), p11 and VGF), in healthy controls ( n=34) and depressed patients ( n=74), before and after 8 weeks of treatment with escitalopram or nortriptyline, as part of the Genome-based Therapeutic Drugs for Depression study. Non-responders had higher baseline mRNA levels of IL-1β (+33%), MIF (+48%), and TNF-α (+39%). Antidepressants reduced the levels of IL-1β (−6%) and MIF (−24%), and increased the levels of GR (+5%) and p11 (+8%), but these changes were not associated with treatment response. In contrast, successful antidepressant response was associated with a reduction in the levels of IL-6 (−9%) and of FKBP5 (−11%), and with an increase in the levels of BDNF (+48%) and VGF (+20%)—that is, response was associated with changes in genes that did not predict, at the baseline, the response. Our findings indicate a dissociation between ‘predictors' and ‘targets' of antidepressant responders. Indeed, while higher levels of proinflammatory cytokines predict lack of future response to antidepressants, changes in inflammation associated with antidepressant response are not reflected by all cytokines at the same time. In contrast, modulation of the GR complex and of neuroplasticity is needed to observe a therapeutic antidepressant effect.

          Related collections

          Most cited references 55

          • Record: found
          • Abstract: not found
          • Article: not found

          An inventory for measuring depression.

           J ERBAUGH,  J. Mock,  A. Beck (1961)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A new depression scale designed to be sensitive to change.

            The construction of a depression rating scale designed to be particularly sensitive to treatment effects is described. Ratings of 54 English and 52 Swedish patients on a 65 item comprehensive psychopathology scale were used to identify the 17 most commonly occurring symptoms in primary depressive illness in the combined sample. Ratings on these 17 items for 64 patients participating in studies of four different antidepressant drugs were used to create a depression scale consisting of the 10 items which showed the largest changes with treatment and the highest correlation to overall change. The inner-rater reliability of the new depression scale was high. Scores on the scale correlated significantly with scores on a standard rating scale for depression, the Hamilton Rating Scale (HRS), indicating its validity as a general severity estimate. Its capacity to differentiate between responders and non-responders to antidepressant treatment was better than the HRS, indicating greater sensitivity to change. The practical and ethical implications in terms of smaller sample sizes in clinical trials are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A meta-analysis of cytokines in major depression.

              Major depression occurs in 4.4% to 20% of the general population. Studies suggest that major depression is accompanied by immune dysregulation and activation of the inflammatory response system (IRS). Our objective was to quantitatively summarize the data on concentrations of specific cytokines in patients diagnosed with a major depressive episode and controls. We performed a meta-analysis of studies measuring cytokine concentration in patients with major depression, with a database search of the English literature (to August 2009) and a manual search of references. Twenty-four studies involving unstimulated measurements of cytokines in patients meeting DSM criteria for major depression were included in the meta-analysis; 13 for tumor necrosis factor (TNF)-alpha, 9 for interleukin (IL)-1beta, 16 for IL-6, 5 for IL-4, 5 for IL-2, 4 for IL-8, 6 for IL-10, and 4 for interferon (IFN)-gamma. There were significantly higher concentrations of TNF-alpha (p < .00001), weighted mean difference (WMD) (95% confidence interval) 3.97 pg/mL (2.24 to 5.71), in depressed subjects compared with control subjects (438 depressed/350 nondepressed). Also, IL-6 concentrations were significantly higher (p < .00001) in depressed subjects compared with control subjects (492 depressed/400 nondepressed) with an overall WMD of 1.78 pg/mL (1.23 to 2.33). There were no significant differences among depressed and nondepressed subjects for the other cytokines studied. This meta-analysis reports significantly higher concentrations of the proinflammatory cytokines TNF-alpha and IL-6 in depressed subjects compared with control subjects. While both positive and negative results have been reported in individual studies, this meta-analytic result strengthens evidence that depression is accompanied by activation of the IRS. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Neuropsychopharmacology
                Neuropsychopharmacology
                Neuropsychopharmacology
                Nature Publishing Group
                0893-133X
                1740-634X
                February 2013
                19 September 2012
                1 February 2013
                : 38
                : 3
                : 377-385
                Affiliations
                [1 ]Department of Biomedical Sciences and Biotechnology, Genetic and Biology Section, University of Brescia , Brescia, Italy
                [2 ]Genetic Unit, IRCCS San Giovanni di Dio, Fatebenefratelli Centre , Brescia, Italy
                [3 ]Institute of Psychiatry, MRC Social, Genetic and Developmental Psychiatry, King's College London , London, UK
                [4 ]Department of Psychiatry, University of Alberta , Edmonton, Canada
                [5 ]Department of Psychological Medicine, Institute of Psychiatry, Section of Perinatal Psychiatry and Stress, Psychiatry and Immunology (SPI-lab), King's College London , London, UK
                npp2012191
                10.1038/npp.2012.191
                3547188
                22990943
                Copyright © 2013 American College of Neuropsychopharmacology

                This work is licensed under the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

                Categories
                Original Article

                Comments

                Comment on this article