1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Amino Acids as the Potential Co-Former for Co-Crystal Development: A Review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Co-crystals are one of the most popular ways to modify the physicochemical properties of active pharmaceutical ingredients (API) without changing pharmacological activity through non-covalent interactions with one or more co-formers. A “green method” has recently prompted many researchers to develop solvent-free techniques or minimize solvents for arranging the eco-friendlier process of co-crystallization. Researchers have also been looking for less-risk co-formers that produce the desired API’s physicochemical properties. This review purposed to collect the report studies of amino acids as the safe co-former and explored their advantages. Structurally, amino acids are promising co-former candidates as they have functional groups that can form hydrogen bonds and increase stability through zwitterionic moieties, which support strong interactions. The co-crystals and deep eutectic solvent yielded from this natural compound have been proven to improve pharmaceutical performance. For example, l-glutamine could reduce the side effects of mesalamine through an acid-base stabilizing effect in the gastrointestinal fluid. In addition, some amino acids, especially l-proline, enhances API’s solubility and absorption in its natural deep eutectic solvent and co-crystals systems. Moreover, some ionic co-crystals of amino acids have also been designed to increase chiral resolution. Therefore, amino acids are safe potential co-formers, which are suitable for improving the physicochemical properties of API and prospective to be developed further in the dosage formula and solid-state syntheses.

          Related collections

          Most cited references106

          • Record: found
          • Abstract: found
          • Article: not found

          Amino acids: metabolism, functions, and nutrition.

          Guoyao Wu (2009)
          Recent years have witnessed the discovery that amino acids (AA) are not only cell signaling molecules but are also regulators of gene expression and the protein phosphorylation cascade. Additionally, AA are key precursors for syntheses of hormones and low-molecular weight nitrogenous substances with each having enormous biological importance. Physiological concentrations of AA and their metabolites (e.g., nitric oxide, polyamines, glutathione, taurine, thyroid hormones, and serotonin) are required for the functions. However, elevated levels of AA and their products (e.g., ammonia, homocysteine, and asymmetric dimethylarginine) are pathogenic factors for neurological disorders, oxidative stress, and cardiovascular disease. Thus, an optimal balance among AA in the diet and circulation is crucial for whole body homeostasis. There is growing recognition that besides their role as building blocks of proteins and polypeptides, some AA regulate key metabolic pathways that are necessary for maintenance, growth, reproduction, and immunity. They are called functional AA, which include arginine, cysteine, glutamine, leucine, proline, and tryptophan. Dietary supplementation with one or a mixture of these AA may be beneficial for (1) ameliorating health problems at various stages of the life cycle (e.g., fetal growth restriction, neonatal morbidity and mortality, weaning-associated intestinal dysfunction and wasting syndrome, obesity, diabetes, cardiovascular disease, the metabolic syndrome, and infertility); (2) optimizing efficiency of metabolic transformations to enhance muscle growth, milk production, egg and meat quality and athletic performance, while preventing excess fat deposition and reducing adiposity. Thus, AA have important functions in both nutrition and health.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Encoding and decoding hydrogen-bond patterns of organic compounds

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Improving drug solubility for oral delivery using solid dispersions.

              C Leuner (2000)
              The solubility behaviour of drugs remains one of the most challenging aspects in formulation development. With the advent of combinatorial chemistry and high throughput screening, the number of poorly water soluble compounds has dramatically increased. Although solid solutions have tremendous potential for improving drug solubility, 40 years of research have resulted in only a few marketed products using this approach. With the introduction of new manufacturing technologies such as hot melt extrusion, it should be possible to overcome problems in scale-up and for this reason solid solutions are enjoying a renaissance. This article begins with an overview of the historical background and definitions of the various systems including eutectic mixtures, solid dispersions and solid solutions. The remainder of the article is devoted to the production, the different carriers and the methods used for the characterization of solid dispersions.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                28 May 2021
                June 2021
                : 26
                : 11
                : 3279
                Affiliations
                Pharmacochemistry Department, School of Pharmacy, Bandung Institute of Technology, Bandung 40132, Indonesia; marbel26.maj@ 123456gmail.com
                Author notes
                Author information
                https://orcid.org/0000-0001-5069-0343
                Article
                molecules-26-03279
                10.3390/molecules26113279
                8198002
                34071731
                22ebd813-b1c3-4aa0-9b8e-8f362d18df5b
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 23 April 2021
                : 26 May 2021
                Categories
                Review

                amino acids,zwitterionic,co-crystal,anionic co-crystal,ionic co-crystal,salt co-crystal,l-proline,solubility,bioavailability,chiral resolution.

                Comments

                Comment on this article