+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intestinal Permeability and Drug Absorption: Predictive Experimental, Computational and In Vivo Approaches


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          The main objective of this review is to discuss recent advancements in the overall investigation and in vivo prediction of drug absorption. The intestinal permeability of an orally administered drug (given the value P eff) has been widely used to determine the rate and extent of the drug’s intestinal absorption (F abs) in humans. Preclinical gastrointestinal (GI) absorption models are currently in demand for the pharmaceutical development of novel dosage forms and new drug products. However, there is a strong need to improve our understanding of the interplay between pharmaceutical, biopharmaceutical, biochemical, and physiological factors when predicting F abs and bioavailability. Currently, our knowledge of GI secretion, GI motility, and regional intestinal permeability, in both healthy subjects and patients with GI diseases, is limited by the relative inaccessibility of some intestinal segments of the human GI tract. In particular, our understanding of the complex and highly dynamic physiology of the region from the mid-jejunum to the sigmoid colon could be significantly improved. One approach to the assessment of intestinal permeability is to use animal models that allow these intestinal regions to be investigated in detail and then to compare the results with those from simple human permeability models such as cell cultures. Investigation of intestinal drug permeation processes is a crucial biopharmaceutical step in the development of oral pharmaceutical products. The determination of the intestinal P eff for a specific drug is dependent on the technique, model, and conditions applied, and is influenced by multiple interactions between the drug molecule and the biological membranes.

          Related collections

          Most cited references88

          • Record: found
          • Abstract: found
          • Article: not found

          A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes.

          Blood-brain barrier (BBB) characteristics are induced and maintained by cross-talk between brain microvessel endothelial cells and neighbouring elements of the neurovascular unit. While pericytes are the cells situated closest to brain endothelial cells morphologically and share a common basement membrane, they have not been used in co-culture BBB models for testing drug permeability. We have developed and characterized a new syngeneic BBB model using primary cultures of the three main cell types of cerebral microvessels. The co-culture of endothelial cells, pericytes and astrocytes mimick the anatomical situation in vivo. In the presence of both pericytes and astrocytes rat brain endothelial cells expressed enhanced levels of tight junction (TJ) proteins occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. Further morphological evidence of the presence of interendothelial TJs was provided by electron microscopy. The transendothelial electrical resistance (TEER) of brain endothelial monolayers in triple co-culture, indicating the tightness of TJs reached 400Omegacm(2) on average, while the endothelial permeability coefficients (P(e)) for fluorescein was in the range of 3x10(-6)cm/s. Brain endothelial cells in the new model expressed glucose transporter-1, efflux transporters P-glycoprotein and multidrug resistance protein-1, and showed a polarized transport of rhodamine 123, a ligand for P-glycoprotein. To further characterize the model, drug permeability assays were performed using a set of 19 compounds with known in vivo BBB permeability. Good correlation (R(2)=0.89) was found between in vitroP(e) values obtained from measurements on the BBB model and in vivo BBB permeability data. The new BBB model, which is the first model to incorporate pericytes in a triple co-culture setting, can be a useful tool for research on BBB physiology and pathology and to test candidate compounds for centrally acting drugs.
            • Record: found
            • Abstract: found
            • Article: not found

            Human Intestinal Organoids Maintain Self-Renewal Capacity and Cellular Diversity in Niche-Inspired Culture Condition

            Cellular diversity that shapes tissue architecture and function is governed by multiple niche signals. Nonetheless, maintaining cellular diversity in human intestinal organoids has been challenging. Based on niche ligands present in the natural stem cell milieu, we establish a refined organoid culture condition for intestinal epithelia that allows human intestinal organoids to concurrently undergo multi-differentiation and self-renewal. High-throughput screening reveals that the combination of insulin-like growth factor 1 (IGF-1) and fibroblast growth factor 2 (FGF-2) enhances the clonogenic capacity and CRISPR-genome engineering efficiency of human intestinal stem cells. The combination equally enables long-term culture of a range of intestinal organoids, including rat small intestinal organoids. Droplet-based single-cell RNA sequencing further illustrates the conservation of the native cellular diversity in human small intestinal organoids cultured with the refined condition. The modified culture protocol outperforms the conventional method and offers a viable strategy for modeling human intestinal tissues and diseases in an in vivo relevant context.
              • Record: found
              • Abstract: found
              • Article: not found

              Coexistence of passive and carrier-mediated processes in drug transport.

              The permeability of biological membranes is one of the most important determinants of the pharmacokinetic processes of a drug. Although it is often accepted that many drug substances are transported across biological membranes by passive transcellular diffusion, a recent hypothesis speculated that carrier-mediated mechanisms might account for the majority of membrane drug transport processes in biological systems. Based on evidence of the physicochemical characteristics and of in vitro and in vivo findings for marketed drugs, as well as results from real-life discovery and development projects, we present the view that both passive transcellular processes and carrier-mediated processes coexist and contribute to drug transport activities across biological membranes.

                Author and article information

                13 August 2019
                August 2019
                : 11
                : 8
                : 411
                Department of Pharmacy, Uppsala University, Box 580 SE-751 23 Uppsala, Sweden
                Author notes
                [* ]Correspondence: hans.lennernas@ 123456farmaci.uu.se ; Tel.: +46-18-471-4317; Fax: +46-18-471-4223
                Author information
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                : 02 July 2019
                : 07 August 2019

                intestinal permeability,intestinal drug absorption,experimental and computational permeability methods


                Comment on this article