6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multi-trait selection for improved solid wood physical and flexural properties in white spruce

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Commercial production of high-quality lumber for Nordic conifers is negatively impacted by long rotation age and adverse negative correlations between growth and wood quality traits. A prospective solution to ensure sufficient fibre quality from future plantations is to identify key wood traits for desired applications and to consider them in tree breeding programs. In this study, we used the widespread and largely reforested white spruce (Picea glauca [Moench] Voss) in Canada to investigate the genetic control of wood flexural properties such as stiffness, i.e. modulus of elasticity (MOE), and strength, i.e. modulus of rupture (MOR). We also looked at their phenotypic and genetic correlations with other wood quality and growth traits to assess the efficiency of indirect methods of selection to improve wood flexural properties in the context of multi-trait selection in tree breeding programs. To achieve this, standardized solid wood samples, growth records and standing tree wood quality traits were collected from 289 trees belonging to 38 white spruce families from a polycross genetic trial established on two different sites in the province of Quebec, Canada. Flexural stiffness and strength, height, diameter at breast height (DBH) and wood density showed moderate to high heritability. Flexural stiffness was also positively correlated at the genetic level with flexural strength, average wood density and acoustic velocity as an indirect measure of dynamic MOE (${r}_{\mathrm{G}}\(= 0.99, \){r}_{\mathrm{G}}\(= 0.78 and \){r}_{\mathrm{G}}$= 0.78, respectively). When selecting the top 5 per cent of the trees, the expected genetic gains varied from 3.6 per cent for acoustic velocity to 16.5 per cent for MOE. Selection based on wood density and acoustic velocity would result in considerable genetic gains in flexural stiffness. Several multi-trait selection scenarios were tested to investigate the genetic gains obtained from selecting with different combinations of growth and wood quality traits. The results showed that indirect selection for wood flexural properties by means of acoustic velocity and wood density are efficient methods that can be combined in operational white spruce breeding programs to increase simultaneously genetic gains for growth and wood flexural properties.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: not found
          • Book: not found

          Forest genetics

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Multi‐trait genomic selection for weevil resistance, growth, and wood quality in Norway spruce

            Abstract Plantation‐grown trees have to cope with an increasing pressure of pest and disease in the context of climate change, and breeding approaches using genomics may offer efficient and flexible tools to face this pressure. In the present study, we targeted genetic improvement of resistance of an introduced conifer species in Canada, Norway spruce (Picea abies (L.) Karst.), to the native white pine weevil (Pissodes strobi Peck). We developed single‐ and multi‐trait genomic selection (GS) models and selection indices considering the relationships between weevil resistance, intrinsic wood quality, and growth traits. Weevil resistance, acoustic velocity as a proxy for mechanical wood stiffness, and average wood density showed moderate‐to‐high heritability and low genotype‐by‐environment interactions. Weevil resistance was genetically positively correlated with tree height, height‐to‐diameter at breast height (DBH) ratio, and acoustic velocity. The accuracy of the different GS models tested (GBLUP, threshold GBLUP, Bayesian ridge regression, BayesCπ) was high and did not differ among each other. Multi‐trait models performed similarly as single‐trait models when all trees were phenotyped. However, when weevil attack data were not available for all trees, weevil resistance was more accurately predicted by integrating genetically correlated growth traits into multi‐trait GS models. A GS index that corresponded to the breeders’ priorities achieved near maximum gains for weevil resistance, acoustic velocity, and height growth, but a small decrease for DBH. The results of this study indicate that it is possible to breed for high‐quality, weevil‐resistant Norway spruce reforestation stock with high accuracy achieved from single‐trait or multi‐trait GS.
              Bookmark
              • Record: found
              • Abstract: not found
              • Book Chapter: not found

              Radial Variation in Wood Structure and Function in Woody Plants, and Hypotheses for Its Occurrence

                Bookmark

                Author and article information

                Journal
                Forestry: An International Journal of Forest Research
                Oxford University Press (OUP)
                0015-752X
                1464-3626
                October 2022
                August 09 2022
                March 22 2022
                October 2022
                August 09 2022
                March 22 2022
                : 95
                : 4
                : 492-503
                Article
                10.1093/forestry/cpac006
                230782fa-9489-4ebe-b0d5-3b57737c85fb
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article