39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mesenchymal Stromal Cells Primed with Paclitaxel Provide a New Approach for Cancer Therapy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Mesenchymal stromal cells may represent an ideal candidate to deliver anti-cancer drugs. In a previous study, we demonstrated that exposure of mouse bone marrow derived stromal cells to Doxorubicin led them to acquire anti-proliferative potential towards co-cultured haematopoietic stem cells (HSCs). We thus hypothesized whether freshly isolated human bone marrow Mesenchymal stem cells (hMSCs) and mature murine stromal cells (SR4987 line) primed in vitro with anti-cancer drugs and then localized near cancer cells, could inhibit proliferation.

          Methods and Principal Findings

          Paclitaxel (PTX) was used to prime culture of hMSCs and SR4987. Incorporation of PTX into hMSCs was studied by using FICT-labelled-PTX and analyzed by FACS and confocal microscopy. Release of PTX in culture medium by PTX primed hMSCs (hMSCsPTX) was investigated by HPLC. Culture of Endothelial cells (ECs) and aorta ring assay were used to test the anti-angiogenic activity of hMSCsPTX and PTX primed SR4987(SR4987PTX), while anti-tumor activity was tested in vitro on the proliferation of different tumor cell lines and in vivo by co-transplanting hMSCsPTX and SR4987PTX with cancer cells in mice. Nevertheless, despite a loss of cells due to chemo-induced apoptosis, both hMSCs and SR4987 were able to rapidly incorporate PTX and could slowly release PTX in the culture medium in a time dependent manner. PTX primed cells acquired a potent anti-tumor and anti-angiogenic activity in vitro that was dose dependent, and demonstrable by using their conditioned medium or by co-culture assay. Finally, hMSCsPTX and SR4987PTX co-injected with human cancer cells (DU145 and U87MG) and mouse melanoma cells (B16) in immunodeficient and in syngenic mice significantly delayed tumor takes and reduced tumor growth.

          Conclusions

          These data demonstrate, for the first time, that without any genetic manipulation, mesenchymal stromal cells can uptake and subsequently slowly release PTX. This may lead to potential new tools to increase efficacy of cancer therapy.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas.

          The poor survival of patients with human malignant gliomas relates partly to the inability to deliver therapeutic agents to the tumor. Because it has been suggested that circulating bone marrow-derived stem cells can be recruited into solid organs in response to tissue stresses, we hypothesized that human bone marrow-derived mesenchymal stem cells (hMSC) may have a tropism for brain tumors and thus could be used as delivery vehicles for glioma therapy. To test this, we isolated hMSCs from bone marrow of normal volunteers, fluorescently labeled the cells, and injected them into the carotid artery of mice bearing human glioma intracranial xenografts (U87, U251, and LN229). hMSCs were seen exclusively within the brain tumors regardless of whether the cells were injected into the ipsilateral or contralateral carotid artery. In contrast, intracarotid injections of fibroblasts or U87 glioma cells resulted in widespread distribution of delivered cells without tumor specificity. To assess the potential of hMSCs to track human gliomas, we injected hMSCs directly into the cerebral hemisphere opposite an established human glioma and showed that the hMSCs were capable of migrating into the xenograft in vivo. Likewise, in vitro Matrigel invasion assays showed that conditioned medium from gliomas, but not from fibroblasts or astrocytes, supported the migration of hMSCs and that platelet-derived growth factor, epidermal growth factor, or stromal cell-derived factor-1alpha, but not basic fibroblast growth factor or vascular endothelial growth factor, enhanced hMSC migration. To test the potential of hMSCs to deliver a therapeutic agent, hMSCs were engineered to release IFN-beta (hMSC-IFN-beta). In vitro coculture and Transwell experiments showed the efficacy of hMSC-IFN-beta against human gliomas. In vivo experiments showed that treatment of human U87 intracranial glioma xenografts with hMSC-IFN-beta significantly increase animal survival compared with controls (P < 0.05). We conclude that hMSCs can integrate into human gliomas after intravascular or local delivery, that this engraftment may be mediated by growth factors, and that this tropism of hMSCs for human gliomas can be exploited to therapeutic advantage.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors.

            Molecules that physiologically control cell proliferation are often produced locally in tissues and are rapidly destroyed when they enter circulation. This allows local effects while avoiding interference with other systems. Unfortunately, it also limits the therapeutic use of these molecules via systemic delivery. We here demonstrate that, for the purpose of anticancer therapy, bone marrow-derived mesenchymal stem cells (MSCs) can produce biological agents locally at tumor sites. We show that the tumor microenvironment preferentially promotes the engraftment of MSCs as compared with other tissues. MSCs with forced expression of IFN-beta inhibited the growth of malignant cells in vivo. Importantly, this effect required the integration of MSCs into the tumors and could not be achieved by systemically delivered IFN-beta or by IFN-beta produced by MSCs at a site distant from the tumors. Our results indicate that MSCs may serve as a platform for delivery of biological agents in tumors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model.

              The prognosis of patients with malignant glioma is extremely poor, despite the extensive surgical treatment that they receive and recent improvements in adjuvant radio- and chemotherapy. In the present study, we propose the use of gene-modified mesenchymal stem cells (MSCs) as a new tool for gene therapy of malignant brain neoplasms. Primary MSCs isolated from Fischer 344 rats possessed excellent migratory ability and exerted inhibitory effects on the proliferation of 9L glioma cell in vitro. We also confirmed the migratory capacity of MSCs in vivo and showed that when they were inoculated into the contralateral hemisphere, they migrated towards 9L glioma cells through the corpus callosum. MSCs implanted directly into the tumor localized mainly at the border between the 9L tumor cells and normal brain parenchyma, and also infiltrated into the tumor bed. Intratumoral injection of MSCs caused significant inhibition of 9L tumor growth and increased the survival of 9L glioma-bearing rats. Gene-modification of MSCs by infection with an adenoviral vector encoding human interleukin-2 (IL-2) clearly augmented the antitumor effect and further prolonged the survival of tumor-bearing rats. Thus, gene therapy employing MSCs as a targeting vehicle would be promising as a new therapeutic approach for refractory brain tumor.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                20 December 2011
                : 6
                : 12
                : e28321
                Affiliations
                [1 ]Department of Public Health, Microbiology, Virology, University of Milan, Milan, Italy
                [2 ]Department of Cerebrovascular Diseases, Fondazione IRCCS Neurological Institute Carlo Besta, Milan, Italy
                [3 ]Istituto Zooprofilattico Sperimentale della Lombardia e dell' Emilia Romagna, Brescia, Italy
                [4 ]Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
                [5 ]Department of Diagnostics and Applied Technology, Fondazione IRCCS Neurological Institute Carlo Besta, Milan, Italy
                [6 ]Department of Biology, University of Milan, Milan, Italy
                [7 ]Department of Experimental and Applied Medicine, University of Brescia, Brescia, Italy
                [8 ]Institute of Neurosurgery, Catholic University School of Medicine, Rome, Italy
                [9 ]Institute of Neurobiology and Molecular Medicine, CNR, Rome, Italy
                University of Frankfurt - University Hospital Frankfurt, Germany
                Author notes

                Conceived and designed the experiments: AP GA. Performed the experiments: AB VC GI SN FS LC EC LV AL DC MF AP GC GA RP MLF. Analyzed the data: AP AB GA VC GI FS LC EC LV AL DC MF GM. Contributed reagents/materials/analysis tools: AP GI MF LV AL EC GC CA EP. Wrote the paper: AP GA. Provided endothelial cells: AC. Supervised in vitro studies: EP.

                Article
                PONE-D-11-06608
                10.1371/journal.pone.0028321
                3243689
                22205945
                230cdba0-9861-438a-a953-d53f1d5de441
                Pessina et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 15 April 2011
                : 5 November 2011
                Page count
                Pages: 11
                Categories
                Research Article
                Biology
                Developmental Biology
                Stem Cells
                Mesenchymal Stem Cells
                Medicine
                Oncology
                Cancer Treatment
                Antiangiogenesis Therapy

                Uncategorized
                Uncategorized

                Comments

                Comment on this article