+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      The BoneXpert method for automated determination of skeletal maturity.

      IEEE transactions on medical imaging

      Adolescent, Age Determination by Skeleton, methods, Anthropometry, Arm, anatomy & histology, radiography, Bone Development, Bone and Bones, Child, Child, Preschool, Computer-Aided Design, Female, Hand, Humans, Image Processing, Computer-Assisted, Male, Models, Anatomic, Principal Component Analysis, Reproducibility of Results

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Bone age rating is associated with a considerable variability from the human interpretation, and this is the motivation for presenting a new method for automated determination of bone age (skeletal maturity). The method, called BoneXpert, reconstructs, from radiographs of the hand, the borders of 15 bones automatically and then computes "intrinsic" bone ages for each of 13 bones (radius, ulna, and 11 short bones). Finally, it transforms the intrinsic bone ages into Greulich Pyle (GP) or Tanner Whitehouse (TW) bone age. The bone reconstruction method automatically rejects images with abnormal bone morphology or very poor image quality. From the methodological point of view, BoneXpert contains the following innovations: 1) a generative model (active appearance model) for the bone reconstruction; 2) the prediction of bone age from shape, intensity, and texture scores derived from principal component analysis; 3) the consensus bone age concept that defines bone age of each bone as the best estimate of the bone age of the other bones in the hand; 4) a common bone age model for males and females; and 5) the unified modelling of TW and GP bone age. BoneXpert is developed on 1559 images. It is validated on the Greulich Pyle atlas in the age range 2-17 years yielding an SD of 0.42 years [0.37; 0.47] 95% conf, and on 84 clinical TW-rated images yielding an SD of 0.80 years [0.68; 0.93] 95% conf. The precision of the GP bone age determination (its ability to yield the same result on a repeated radiograph) is inferred under suitable assumptions from six longitudinal series of radiographs. The result is an SD on a single determination of 0.17 years [0.13; 0.21] 95% conf.

          Related collections

          Author and article information



          Comment on this article