68
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Multiple opportunistic pathogens can cause a bleaching disease in the red seaweed Delisea pulchra : Opportunistic pathogens of a model macroalga

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          While macroalgae (or seaweeds) are increasingly recognized to suffer from disease, in most cases the causative agents are unknown. The model macroalga Delisea pulchra is susceptible to a bleaching disease and previous work has identified two epiphytic bacteria, belonging to the Roseobacter clade, that cause bleaching under laboratory conditions. However, recent environmental surveys have shown that these in vitro pathogens are not abundant in naturally bleached D. pulchra, suggesting the presence of other pathogens capable of causing this algal disease. To test this hypothesis, we cultured bacteria that were abundant on bleached tissue across multiple disease events and assessed their ability to cause bleaching disease. We identified the new pathogens Alteromonas sp. BL110, Aquimarina sp. AD1 and BL5 and Agarivorans sp BL7 that are phylogenetically diverse, distinct from the previous two pathogens and can also be found in low abundance in healthy individuals. Moreover, we found that bacterial communities of diseased individuals that were infected with these pathogens were less diverse and more divergent from each other than those of healthy algae. This study demonstrates that multiple and opportunistic pathogens can cause the same disease outcome for D. pulchra and we postulate that such pathogens are more common in marine systems than previously anticipated.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          The seaweed holobiont: understanding seaweed-bacteria interactions.

          Seaweeds (macroalgae) form a diverse and ubiquitous group of photosynthetic organisms that play an essential role in aquatic ecosystems. These ecosystem engineers contribute significantly to global primary production and are the major habitat formers on rocky shores in temperate waters, providing food and shelter for aquatic life. Like other eukaryotic organisms, macroalgae harbor a rich diversity of associated microorganisms with functions related to host health and defense. In particular, epiphytic bacterial communities have been reported as essential for normal morphological development of the algal host, and bacteria with antifouling properties are thought to protect chemically undefended macroalgae from detrimental, secondary colonization by other microscopic and macroscopic epibiota. This tight relationship suggests that macroalgae and epiphytic bacteria interact as a unified functional entity or holobiont, analogous to the previously suggested relationship in corals. Moreover, given that the impact of diseases in marine ecosystems is apparently increasing, understanding the role of bacteria as saprophytes and pathogens in seaweed communities may have important implications for marine management strategies. This review reports on the recent advances in the understanding of macroalgal-bacterial interactions with reference to the diversity and functional role of epiphytic bacteria in maintaining algal health, highlighting the holobiont concept. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
            • Record: found
            • Abstract: found
            • Article: not found

            Marine sponges and their microbial symbionts: love and other relationships.

            Many marine sponges harbour dense and diverse microbial communities of considerable ecological and biotechnological importance. While the past decade has seen tremendous advances in our understanding of the phylogenetic diversity of sponge-associated microorganisms (more than 25 bacterial phyla have now been reported from sponges), it is only in the past 3-4 years that the in situ activity and function of these microbes has become a major research focus. Already the rewards of this new emphasis are evident, with genomics and experimental approaches yielding novel insights into symbiont function. Key steps in the nitrogen cycle [denitrification, anaerobic ammonium oxidation (Anammox)] have recently been demonstrated in sponges for the first time, with diverse bacteria - including the sponge-associated candidate phylum 'Poribacteria'- being implicated in these processes. In this minireview we examine recent major developments in the microbiology of sponges, and identify several research areas (e.g. biology of viruses in sponges, effects of environmental stress) that we believe are deserving of increased attention. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
              • Record: found
              • Abstract: not found
              • Article: not found

              Allocating Resources to Reproduction and Defense

                Author and article information

                Journal
                Environmental Microbiology
                Environ Microbiol
                Wiley
                14622912
                November 2016
                November 2016
                July 15 2016
                : 18
                : 11
                : 3962-3975
                Affiliations
                [1 ]Centre for Marine Bio-Innovation & School of Biological; Earth and Environmental Sciences. The University of New South Wales Sydney; NSW 2052 Australia
                [2 ]Singapore Centre for Environmental Life Sciences Engineering; Nanyang Technological University; Singapore 637551 Singapore
                Article
                10.1111/1462-2920.13403
                27337296
                234bac28-b14d-4e20-bfbb-ebf842fefcd1
                © 2016

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions

                http://onlinelibrary.wiley.com/termsAndConditions

                History

                Comments

                Comment on this article

                Related Documents Log