20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nutritional and health benefits of pulses

      1 , 2 , 1
      Applied Physiology, Nutrition, and Metabolism
      Canadian Science Publishing

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pulses (beans, peas, and lentils) have been consumed for at least 10 000 years and are among the most extensively used foods in the world. A wide variety of pulses can be grown globally, making them important both economically as well as nutritionally. Pulses provide protein and fibre, as well as a significant source of vitamins and minerals, such as iron, zinc, folate, and magnesium, and consuming half a cup of beans or peas per day can enhance diet quality by increasing intakes of these nutrients. In addition, the phytochemicals, saponins, and tannins found in pulses possess antioxidant and anti-carcinogenic effects, indicating that pulses may have significant anti-cancer effects. Pulse consumption also improves serum lipid profiles and positively affects several other cardiovascular disease risk factors, such as blood pressure, platelet activity, and inflammation. Pulses are high in fibre and have a low glycemic index, making them particularly beneficial to people with diabetes by assisting in maintaining healthy blood glucose and insulin levels. Emerging research examining the effect of pulse components on HIV and consumption patterns with aging populations indicates that pulses may have further effects on health. In conclusion, including pulses in the diet is a healthy way to meet dietary recommendations and is associated with reduced risk of several chronic diseases. Long-term randomized controlled trials are needed to demonstrate the direct effects of pulses on these diseases.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties

          Phenolics are broadly distributed in the plant kingdom and are the most abundant secondary metabolites of plants. Plant polyphenols have drawn increasing attention due to their potent antioxidant properties and their marked effects in the prevention of various oxidative stress associated diseases such as cancer. In the last few years, the identification and development of phenolic compounds or extracts from different plants has become a major area of health- and medical-related research. This review provides an updated and comprehensive overview on phenolic extraction, purification, analysis and quantification as well as their antioxidant properties. Furthermore, the anticancer effects of phenolics in-vitro and in-vivo animal models are viewed, including recent human intervention studies. Finally, possible mechanisms of action involving antioxidant and pro-oxidant activity as well as interference with cellular functions are discussed.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Nutrition recommendations and interventions for diabetes: a position statement of the American Diabetes Association.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tannins and human health: a review.

              Tannins (commonly referred to as tannic acid) are water-soluble polyphenols that are present in many plant foods. They have been reported to be responsible for decreases in feed intake, growth rate, feed efficiency, net metabolizable energy, and protein digestibility in experimental animals. Therefore, foods rich in tannins are considered to be of low nutritional value. However, recent findings indicate that the major effect of tannins was not due to their inhibition on food consumption or digestion but rather the decreased efficiency in converting the absorbed nutrients to new body substances. Incidences of certain cancers, such as esophageal cancer, have been reported to be related to consumption of tannins-rich foods such as betel nuts and herbal teas, suggesting that tannins might be carcinogenic. However, other reports indicated that the carcinogenic activity of tannins might be related to components associated with tannins rather than tannins themselves. Interestingly, many reports indicated negative association between tea consumption and incidences of cancers. Tea polyphenols and many tannin components were suggested to be anticarcinogenic. Many tannin molecules have also been shown to reduce the mutagenic activity of a number of mutagens. Many carcinogens and/or mutagens produce oxygen-free radicals for interaction with cellular macromolecules. The anticarcinogenic and antimutagenic potentials of tannins may be related to their antioxidative property, which is important in protecting cellular oxidative damage, including lipid peroxidation. The generation of superoxide radicals was reported to be inhibited by tannins and related compounds. The antimicrobial activities of tannins are well documented. The growth of many fungi, yeasts, bacteria, and viruses was inhibited by tannins. We have also found that tannic acid and propyl gallate, but not gallic acid, were inhibitory to foodborne bacteria, aquatic bacteria, and off-flavor-producing microorganisms. Their antimicrobial properties seemed to be associated with the hydrolysis of ester linkage between gallic acid and polyols hydrolyzed after ripening of many edible fruits. Tannins in these fruits thus serve as a natural defense mechanism against microbial infections. The antimicrobial property of tannic acid can also be used in food processing to increase the shelf-life of certain foods, such as catfish fillets. Tannins have also been reported to exert other physiological effects, such as to accelerate blood clotting, reduce blood pressure, decrease the serum lipid level, produce liver necrosis, and modulate immunoresponses. The dosage and kind of tannins are critical to these effects. The aim of this review is to summarize and analyze the vast and sometimes conflicting literature on tannins and to provide as accurately as possible the needed information for assessment of the overall effects of tannins on human health.
                Bookmark

                Author and article information

                Journal
                Applied Physiology, Nutrition, and Metabolism
                Appl. Physiol. Nutr. Metab.
                Canadian Science Publishing
                1715-5312
                1715-5320
                November 2014
                November 2014
                : 39
                : 11
                : 1197-1204
                Affiliations
                [1 ]Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
                [2 ]Community Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
                Article
                10.1139/apnm-2013-0557
                25061763
                234cf087-b0c3-4dd1-9ec6-40a1054dc048
                © 2014

                http://www.nrcresearchpress.com/page/about/CorporateTextAndDataMining

                History

                Comments

                Comment on this article