10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Quantum yields for oxygenic and anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica.

      Proceedings of the National Academy of Sciences of the United States of America

      Read this article at

      ScienceOpenPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A comparison of the quantum yield spectra of the oxygenic (H(2)O as the electron donor) with the anoxygenic (H(2)S as the electron donor) photosynthesis of the cyanobacterium, Oscillatoria limnetica reveals that anoxygenic photosynthesis is driven by photosystem I only. The highest quantum yields of the latter (maximum; 0.059 CO(2) molecules/quantum of absorbed light) were obtained with wavelengths which preferentially excite photosystem I (<550, >650) in which chlorophyll a and carotenoids are the major pigments. The addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea had no effect on anoxygenic photosynthesis, and no enhancement in quantum efficiency was observed by a superimposition of light preferentially exciting photosystem II.Oxygenic photosynthesis efficiently utilizes only a narrow range of the absorption spectrum (550-650 nm) where light is provided in excess to photosystem II via phycocyanin. The quantum yield (0.033 CO(2) molecules/quantum of absorbed light) is lower than the theoretical yield by a factor of 3, possibly due to inefficient light transfer from photosystem II to I. Thus, 3-fold enhancement of oxygenic photosynthesis by superimposition of photosystem I light, and low quantum yields for anoxygenic photosynthesis, were obtained in this region. These results are consonant with the suggestion that such a cyanobacterium represents an intermediate stage in phototrophic evolution.

          Related collections

          Author and article information

          Journal
          16592398
          431094

          Comments

          Comment on this article