23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Structural and biochemical characterization of the essential DsbA-like disulfide bond forming protein from Mycobacterium tuberculosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Bacterial Di sulfide bond forming (Dsb) proteins facilitate proper folding and disulfide bond formation of periplasmic and secreted proteins. Previously, we have shown that Mycobacterium tuberculosis Mt-DsbE and Mt-DsbF aid in vitro oxidative folding of proteins. The M. tuberculosis proteome contains another predicted membrane-tethered Dsb protein, Mt-DsbA, which is encoded by an essential gene.

          Results

          Herein, we present structural and biochemical analyses of Mt-DsbA. The X-ray crystal structure of Mt-DsbA reveals a two-domain structure, comprising a canonical thioredoxin domain with the conserved CXXC active site cysteines in their reduced form, and an inserted α-helical domain containing a structural disulfide bond. The overall fold of Mt-DsbA resembles that of other DsbA-like proteins and not Mt-DsbE or Mt-DsbF. Biochemical characterization demonstrates that, unlike Mt-DsbE and Mt-DsbF, Mt-DsbA is unable to oxidatively fold reduced, denatured hirudin. Moreover, on the substrates tested in this study, Mt-DsbA has disulfide bond isomerase activity contrary to Mt-DsbE and Mt-DsbF.

          Conclusion

          These results suggest that Mt-DsbA acts upon a distinct subset of substrates as compared to Mt-DsbE and Mt-DsbF. One could speculate that Mt-DsbE and Mt-DsbF are functionally redundant whereas Mt-DsbA is not, offering an explanation for the essentiality of Mt-DsbA in M. tuberculosis.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Genes required for mycobacterial growth defined by high density mutagenesis.

          Despite over a century of research, tuberculosis remains a leading cause of infectious death worldwide. Faced with increasing rates of drug resistance, the identification of genes that are required for the growth of this organism should provide new targets for the design of antimycobacterial agents. Here, we describe the use of transposon site hybridization (TraSH) to comprehensively identify the genes required by the causative agent, Mycobacterium tuberculosis, for optimal growth. These genes include those that can be assigned to essential pathways as well as many of unknown function. The genes important for the growth of M. tuberculosis are largely conserved in the degenerate genome of the leprosy bacillus, Mycobacterium leprae, indicating that non-essential functions have been selectively lost since this bacterium diverged from other mycobacteria. In contrast, a surprisingly high proportion of these genes lack identifiable orthologues in other bacteria, suggesting that the minimal gene set required for survival varies greatly between organisms with different evolutionary histories.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Main-chain bond lengths and bond angles in protein structures.

            The main-chain bond lengths and bond angles of protein structures are analysed as a function of resolution. Neither the means nor standard deviations of these parameters show any correlation with resolution over the resolution range investigated. This is as might be expected as bond lengths and bond angles are likely to be heavily influenced by the geometrical restraints applied during structure refinement. The size of this influence is then investigated by performing an analysis of variance on the mean values across the five most commonly used refinement methods. The differences in means are found to be highly statistically significant, suggesting that the different target values used by the different methods leave their imprint on the structures they refine. This has implications concerning the actual target values used during refinement and stresses the importance of the values being not only accurate but also consistent from one refinement method to another.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of a protein required for disulfide bond formation in vivo.

              We describe a mutation (dsbA) that renders Escherichia coli severely defective in disulfide bond formation. In dsbA mutant cells, pulse-labeled beta-lactamase, alkaline phosphatase, and OmpA are secreted but largely lack disulfide bonds. These disulfideless proteins may represent in vivo folding intermediates, since they are protease sensitive and chase slowly into stable oxidized forms. The dsbA gene codes for a 21,000 Mr periplasmic protein containing the sequence cys-pro-his-cys, which resembles the active sites of certain disulfide oxidoreductases. The purified DsbA protein is capable of reducing the disulfide bonds of insulin, an activity that it shares with these disulfide oxidoreductases. Our results suggest that disulfide bond formation is facilitated by DsbA in vivo.
                Bookmark

                Author and article information

                Contributors
                Journal
                BMC Struct Biol
                BMC Struct. Biol
                BMC Structural Biology
                BioMed Central
                1472-6807
                2013
                18 October 2013
                : 13
                : 23
                Affiliations
                [1 ]Departments of Molecular Biology and Biochemistry, UCI, Irvine, CA 92697, USA
                [2 ]Pharmaceutical Sciences, UCI, Irvine, CA 92697, USA
                Article
                1472-6807-13-23
                10.1186/1472-6807-13-23
                3853704
                24134223
                2373a290-5281-4256-912e-313123863e0b
                Copyright © 2013 Chim et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 9 July 2013
                : 11 October 2013
                Categories
                Research Article

                Molecular biology
                mycobacterium tuberculosis,disulfide bond,x-ray crystallography,dsba,vitamin k epoxide reductase,oxidoreductase

                Comments

                Comment on this article