6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Pancreatic Cell Lines: A Review :

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pancreatic cancer has an extremely poor prognosis and lacks early diagnostic and therapeutic possibilities, mainly because of its silent course and explosive fatal outcome. The histogenesis of the disease and early biochemical and genetic alterations surrounding carcinogenesis are still controversial. In vitro studies offer a useful tool to study physiologic, pathophysiologic, differentiation, and transformation processes of cells and to understand some of these shortcomings. The extreme difficulties in isolating individual pancreatic cells and their purification by maintaining their native characteristics have limited research in this area. This review is intended to present and discuss the current availability of rodent and pancreatic cell lines, their differences as well as the difficulties, limitations, and characteristics of these cultured cells. Discussed are in vitro models; ductal, islet, and acinar cell culture; cell differentiation; cell transformation, including genetic and chromosomal alterations; as well as tumor cell markers. Also addressed are the advantages and problems associated with the cell culture in humans and rodents. Advancements in tissue culture technique and molecular biology offer steady progress in this important line of research. The improved methods not only promise the establishment of beta-cell cultures for the treatment of diabetes, but also for studying sequential genetic alterations during pancreatic carcinogenesis and in understanding the tumor cell origin.

          Related collections

          Most cited references91

          • Record: found
          • Abstract: found
          • Article: not found

          Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes.

          Using in vitro gene amplification by the polymerase chain reaction (PCR) and mutation detection by the RNAase A mismatch cleavage method, we have examined c-K-ras genes in human pancreatic carcinomas. We used frozen tumor specimens and single 5 micron sections from formalin-fixed, paraffin-embedded tumor tissue surgically removed or obtained at autopsy. Twenty-one out of 22 carcinomas of the exocrine pancreas contained c-K-ras genes with mutations at codon 12. In seven cases tested, the mutation was present in both primary tumors and their corresponding metastases. No mutations were detected in normal tissue from the same cancer patients or in five gall bladder carcinomas. We conclude from these results that c-K-ras somatic mutational activation is a critical event in the oncogenesis of most, if not all, human cancers of the exocrine pancreas.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1.

            About 90 percent of human pancreatic carcinomas show allelic loss at chromosome 18q. To identify candidate tumor suppressor genes on 18q, a panel of pancreatic carcinomas were analyzed for convergent sites of homozygous deletion. Twenty-five of 84 tumors had homozygous deletions at 18q21.1, a site that excludes DCC (a candidate suppressor gene for colorectal cancer) and includes DPC4, a gene similar in sequence to a Drosophila melanogaster gene (Mad) implicated in a transforming growth factor-beta (TGF-beta)-like signaling pathway. Potentially inactivating mutations in DPC4 were identified in six of 27 pancreatic carcinomas that did not have homozygous deletions at 18q21.1. These results identify DPC4 as a candidate tumor suppressor gene whose inactivation may play a role in pancreatic and possibly other human cancers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In vitro cultivation of human islets from expanded ductal tissue.

              A major obstacle to successful islet transplantation for both type 1 and 2 diabetes is an inadequate supply of insulin-producing tissue. This need for transplantable human islets has stimulated efforts to expand existing pancreatic islets and/or grow new ones. To test the hypothesis that human adult duct tissue could be expanded and differentiated in vitro to form islet cells, digested pancreatic tissue that is normally discarded from eight human islet isolations was cultured under conditions that allowed expansion of the ductal cells as a monolayer whereupon the cells were overlaid with a thin layer of Matrigel. With this manipulation, the monolayer of epithelial cells formed three-dimensional structures of ductal cysts from which 50-to 150- micrometer diameter islet-like clusters of pancreatic endocrine cells budded. Over 3-4 weeks culture the insulin content per flask increased 10- to 15-fold as the DNA content increased up to 7-fold. The cultivated human islet buds were shown by immunofluorescence to consist of cytokeratin 19-positive duct cells and hormone-positive islet cells. Double staining of insulin and non-beta cell hormones in occasional cells indicated immature cells still in the process of differentiation. Insulin secretion studies were done over 24 h in culture. Compared with their basal secretion at 5 mM glucose, cysts/cultivated human islet buds exposed to stimulatory 20 mM glucose had a 2.3-fold increase in secreted insulin. Thus, duct tissue from human pancreas can be expanded in culture and then be directed to differentiate into glucose responsive islet tissue in vitro. This approach may provide a potential new source of pancreatic islet cells for transplantation.
                Bookmark

                Author and article information

                Journal
                Pancreas
                Pancreas
                Ovid Technologies (Wolters Kluwer Health)
                0885-3177
                2002
                March 2002
                : 24
                : 2
                : 111-120
                Article
                10.1097/00006676-200203000-00001
                11854615
                2382bd53-2207-498f-9ca8-9c01d796a184
                © 2002
                History

                Comments

                Comment on this article