6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Efficient drug delivery of β-estradiol encapsulated in Zn-metal–organic framework nanostructures by microwave-assisted coprecipitation method

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Metal–organic frameworks (MOFs) are structures made up of inorganic nodes, which can be either single ions or clusters of ions and organic linkers. This study reports on a novel processing route for producing β-estradiol encapsulated in Zn-MOF nanocomposites by microwave-assisted coprecipitation as a facile and fast method. Zn-MOF nanocomposites were synthesized with the aid of Zn(OAc) 2⋅2H 2O and 2,6-pyridine dicarboxylic acid ammonium as an organic ligand. Furthermore, we studied encapsulated β-estradiol which is one of the most important classes of estrogenic compounds that are used in the treatment of prostate cancer and breast cancer. The effects of β-estradiol concentration and microwave irradiation on the morphology, particle size, distribution, and in vitro photoluminescence spectroscopy experiments of β-estradiol entrapped in Zn-MOF nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, and Brunauer–Emmett–Teller spectroscopy. These nanostructures can be a good option for thawing hydrophilic and hydrophobic drugs over time. Zn-MOF nanocomposites with high porosity, total pore volume (0.04665 cm 3g −1), and nanostructures have provided the platform to load β-estradiol such as low soluble drugs. Maximum of drug release was about 82% at pH 8.9 after 8 h.

          Related collections

          Most cited references 28

          • Record: found
          • Abstract: found
          • Article: not found

          Sexual differentiation of human behavior: effects of prenatal and pubertal organizational hormones.

          A key question concerns the extent to which sexual differentiation of human behavior is influenced by sex hormones present during sensitive periods of development (organizational effects), as occurs in other mammalian species. The most important sensitive period has been considered to be prenatal, but there is increasing attention to puberty as another organizational period, with the possibility of decreasing sensitivity to sex hormones across the pubertal transition. In this paper, we review evidence that sex hormones present during the prenatal and pubertal periods produce permanent changes to behavior. There is good evidence that exposure to high levels of androgens during prenatal development results in masculinization of activity and occupational interests, sexual orientation, and some spatial abilities; prenatal androgens have a smaller effect on gender identity, and there is insufficient information about androgen effects on sex-linked behavior problems. There is little good evidence regarding long-lasting behavioral effects of pubertal hormones, but there is some suggestion that they influence gender identity and perhaps some sex-linked forms of psychopathology, and there are many opportunities to study this issue. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nano spray drying: a novel method for preparing protein nanoparticles for protein therapy.

            There has been an increasing interest in the development of protein nanotherapeutics for diseases such as cancer, diabetes and asthma. Spray drying with prior micro mixing is commonly used to obtain these powders. However, the separation and collection of protein nanoparticles with conventional spray dryer setups has been known to be extremely challenging due to its typical low collection efficiency for fine particles less than 2μm. To date, there has been no feasible approach to produce these protein nanoparticles in a single step and with high yield (>70%). In this study, we explored the feasibility of the novel Nano Spray Dryer B-90 (equipped with a vibrating mesh spray technology and an electrostatic particle collector) for the production of bovine serum albumin (BSA) nanoparticles. A statistical experimental design method (Taguchi method based on three levels, five variables L(18) orthogonal array robust design) was implemented to study the effect of and optimize the experimental conditions of: (1) spray mesh size, (2) BSA solution concentration, (3) surfactant concentration, (4) drying air flow rate and (5) inlet temperature on: (1) size and (2) morphology (axial ratio). Particle size and morphology were predominantly influenced by the spray mesh size and surfactant concentration, respectively. The drying air flow rate and inlet temperature had minimal impact. Optimized production of smooth spherical nanoparticles (median size: 460±10nm, axial ratio: 1.03±0.00, span 1.03±0.03, yield: 72±4%) was achieved using the 4μm spray mesh at BSA concentration of 0.1% (w/v), surfactant concentration of 0.05% (w/v), drying flow rate of 150L/min and inlet temperature of 120°C. The Nano Spray Dryer B-90 thus offers a new, simple and alternative approach for the production of protein nanoparticles suited for a variety of drug delivery applications. Copyright © 2010 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Recent advances in solid-phase sorbents for sample preparation prior to chromatographic analysis

                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2018
                28 August 2018
                : 12
                : 2635-2643
                Affiliations
                [1 ]Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran, mehdi.ranjbar@ 123456outlook.com
                [2 ]Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran, mehdi.ranjbar@ 123456outlook.com
                [3 ]Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
                Author notes
                Correspondence: Mehdi Ranjbar, Pharmaceutics Research Center, Kerman University of Medical Sciences, PO Box 76175-493, Kerman 76169-11319, Iran, Tel +98 343 132 5241, Fax +98 343 132 5003, Email mehdi.ranjbar@ 123456outlook.com
                Article
                dddt-12-2635
                10.2147/DDDT.S173324
                6118239
                © 2018 Ranjbar et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Methodology

                Comments

                Comment on this article