23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Invited review: Improving feed efficiency of beef cattle – the current state of the art and future challenges

      , , ,
      animal
      Cambridge University Press (CUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Improvements in feed efficiency of beef cattle have the potential to increase producer profitability and simultaneously lower the environmental footprint of beef production. Although there are many different approaches to measuring feed efficiency, residual feed intake (RFI) has increasingly become the measure of choice. Defined as the difference between an animal’s actual and predicted feed intake (based on weight and growth), RFI is conceptually independent of growth and body size. In addition, other measurable traits related to energy expenditure such as estimates of body composition can be included in the calculation of RFI to also force independence from these traits. Feed efficiency is a multifactorial and complex trait in beef cattle and inter-animal variation stems from the interaction of many biological processes influenced, in turn, by physiological status and management regimen. Thus, the purpose of this review was to summarise and interpret current published knowledge and provide insight into research areas worthy of further investigation. Indeed, where sufficient suitable reports exist, meta-analyses were conducted in order to mitigate ambiguity between studies in particular. We have identified a paucity of information on the contribution of key biological processes, including appetite regulation, post-ruminal nutrient absorption, and cellular energetics and metabolism to the efficiency of feed utilisation in cattle. In addition, insufficient information exists on the relationship between RFI status and productivity-related traits at pasture, a concept critical to the overall lifecycle of beef production systems. Overall, published data on the effect of RFI status on both terminal and maternal traits, coupled with the moderate repeatability and heritability of the trait, suggest that breeding for improved RFI, as part of a multi-trait selection index, is both possible and cumulative, with benefits evident throughout the production cycle. Although the advent of genomic selection, with associated improved prediction accuracy, will expedite the introgression of elite genetics for feed efficiency within beef cattle populations, there are challenges associated with this approach which may, in the long-term, be overcome by increased international collaborative effort but, in the short term, will not obviate the on-going requirement for accurate measurement of the primary phenotype.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Rumen Microbiome from Steers Differing in Feed Efficiency

          The cattle rumen has a diverse microbial ecosystem that is essential for the host to digest plant material. Extremes in body weight (BW) gain in mice and humans have been associated with different intestinal microbial populations. The objective of this study was to characterize the microbiome of the cattle rumen among steers differing in feed efficiency. Two contemporary groups of steers (n=148 and n=197) were fed a ration (dry matter basis) of 57.35% dry-rolled corn, 30% wet distillers grain with solubles, 8% alfalfa hay, 4.25% supplement, and 0.4% urea for 63 days. Individual feed intake (FI) and BW gain were determined. Within contemporary group, the four steers within each Cartesian quadrant were sampled (n=16/group) from the bivariate distribution of average daily BW gain and average daily FI. Bacterial 16S rRNA gene amplicons were sequenced from the harvested bovine rumen fluid samples using next-generation sequencing technology. No significant changes in diversity or richness were indicated, and UniFrac principal coordinate analysis did not show any separation of microbial communities within the rumen. However, the abundances of relative microbial populations and operational taxonomic units did reveal significant differences with reference to feed efficiency groups. Bacteroidetes and Firmicutes were the dominant phyla in all ruminal groups, with significant population shifts in relevant ruminal taxa, including phyla Firmicutes and Lentisphaerae, as well as genera Succiniclasticum, Lactobacillus, Ruminococcus, and Prevotella. This study suggests the involvement of the rumen microbiome as a component influencing the efficiency of weight gain at the 16S level, which can be utilized to better understand variations in microbial ecology as well as host factors that will improve feed efficiency.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetic and phenotypic variance and covariance components for feed intake, feed efficiency, and other postweaning traits in Angus cattle.

            Records on 1,180 young Angus bulls and heifers involved in performance tests were used to estimate genetic and phenotypic parameters for feed intake, feed efficiency, and other postweaning traits. The mean age was 268 d at the start of the performance test, which comprised 21-d adjustment and 70-d test periods. Traits studied included 200-d weight, 400-d weight, scrotal circumference, ultrasonic measurements of rib and rump fat depths and longissimus muscle area, ADG, metabolic weight, daily feed intake, feed conversion ratio, and residual feed intake. For all traits except the last five, additional data from the Angus Society ofAustralia pedigree and performance database were included, which increased the number of animals to 27,229. Genetic (co)variances were estimated by REML using animal models. Direct heritability estimates for 200-d weight, 400-d weight, rib fat depth, ADG, feed conversion,and residual feed intake were 0.17 +/- 0.03, 0.27 +/- 0.03, 0.35 +/- 0.04, 0.28 +/- 0.04, 0.29 +/- 0.04, and 0.39 +/- 0.03, respectively. Feed conversion ratio was genetically (r(g) = 0.66 ) and phenotypically (r(p) = 0.53) correlated with residual feed intake. Feed conversion ratio was correlated (r(g) = -0.62, r(p) = -0.74) with ADG, whereas residual feed intake was not (rg = -0.04, r(p) = -0.06). Genetically, both residual feed intake and feed conversion ratio were negatively correlated with direct effects of 200-d weight (r(g) = -0.45 and -0.21) and 400-d weight (r(g) = -0.26 and -0.09). The correlations between the remaining traits and the feed efficiency traits were near zero, except between feed intake and feed conversion ratio (r(g) = 0.31, r(p) = 0.23), feed intake and residual feed intake (r(g) = 0.69, r(p) = 0.72), and rib fat depth and residual feed intake (r(g) = 0.17, r(p) = 0.14). These results indicate that genetic improvement in feed efficiency can be achieved through selection and, in general, correlated responses in growth and the other postweaning traits will be minimal.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cell Biology Symposium: genetics of feed efficiency in dairy and beef cattle.

              Increasing food production for the growing human population off a constraining land base will require greater efficiency of production. Genetic improvement of feed efficiency in cattle, which is cumulative and permanent, is one likely vehicle to achieving efficiency gains. The objective of this review is to summarize genetic parameters for feed efficiency traits in dairy and beef cattle and also to address some of the misconceptions associated with feed efficiency in these sectors, as well as discuss the potential use of feed efficiency in breeding programs. A meta-analysis of up to 39 scientific publications in growing cattle clearly showed that genetic variation in feed efficiency exists with a pooled heritability for residual feed intake (RFI) and feed conversion efficiency of 0.33 ± 0.01 (range of 0.07 to 0.62) and 0.23 ± 0.01 (range of 0.06 to 0.46), respectively. Heritability estimates for feed efficiency in cows were lower; a meta-analysis of up to 11 estimates revealed heritability estimates for gross feed efficiency and RFI of 0.06 ± 0.010 and 0.04 ± 0.008, respectively. Meta-analysis of genetic correlations between feed intake, feed efficiency and other performance traits are presented, and selection index theory is used to calculate the proportion of genetic variation in feed intake that can be explained by easy to measure, and often already collected, data. A large proportion of the genetic variation in feed intake could be explained in both growing animals and lactating animals using up to 5 predictor traits, including BW, growth rate, milk yield, body composition, and linear type traits reflecting body size and muscularity. Knowledge of genetic merit for feed intake can be used, along with estimates of genetic merit for energy sinks, to calculate genetic merit for feed efficiency. Therefore, the marginal benefit of collecting actual feed intake data, using the genetic parameters used in this study, appears to be low. There is now sufficient information available to develop a road map on how best to direct research to ensure long-term food security for a growing human population. Gaps in knowledge are identified here, and possibilities to address these gaps are discussed.
                Bookmark

                Author and article information

                Journal
                animal
                Animal
                Cambridge University Press (CUP)
                1751-7311
                1751-732X
                September 2018
                May 21 2018
                September 2018
                : 12
                : 9
                : 1815-1826
                Article
                10.1017/S1751731118000976
                29779496
                23947964-00a8-4835-87ab-619265be69ec
                © 2018

                https://www.cambridge.org/core/terms

                History

                Comments

                Comment on this article