24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha.

      Diabetes

      Adult, Blood Glucose, metabolism, Body Mass Index, DNA-Binding Proteins, Diglycerides, Fatty Acids, Nonesterified, blood, Glucose, Glucose Clamp Technique, Humans, I-kappa B Proteins, Infusions, Intravenous, Insulin, pharmacology, Insulin Resistance, physiology, Isoenzymes, Lipids, administration & dosage, Male, Muscle, Skeletal, NF-kappa B, Protein Kinase C, Protein Kinase C beta, Signal Transduction

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The possibility that lipid-induced insulin resistance in human muscle is related to alterations in diacylglycerol (DAG)/protein kinase C (PKC) signaling was investigated in normal volunteers during euglycemic-hyperinsulinemic clamping in which plasma free fatty acid (FFA) levels were increased by a lipid/heparin infusion. In keeping with previous reports, rates of insulin-stimulated glucose disappearance (G(Rd)) were normal after 2 h but were reduced by 43% (from 52.7 +/- 8.2 to 30.0 +/- 5.3 micromol. kg(-1). min(-1), P < 0.05) after 6 h of lipid infusion. No changes in PKC activity or DAG mass were seen in muscle biopsy samples after 2 h of lipid infusion; however, at approximately 6 h, PKC activity and DAG mass were increased approximately fourfold, as were the abundance of membrane-associated PKC-betaII and -delta. A threefold increase in membrane-associated PKC-betaII was also observed at approximately 2 h but was not statistically significant (P = 0.058). Ceramide mass was not changed at either time point. To evaluate whether the fatty acid-induced insulin activation of PKC was associated with a change in the IkB kinase (IKK)/nuclear factor (NF)-kappaB pathway, we determined the abundance in muscle of IkappaB-alpha, an inhibitor of NF-kappaB that is degraded after its phosphorylation by IKK. In parallel with the changes in DAG/PKC, no change in IkappaB-alpha mass was observed after 2 h of lipid infusion, but at approximately 6 h, IkappaB-alpha was diminished by 70%. In summary, the results indicated that the insulin resistance observed in human muscle when plasma FFA levels were elevated during euglycemic-hyperinsulinemic clamping was associated with increases in DAG mass and membrane-associated PKC-betaII and -delta and a decrease in IkappaB-alpha. Whether acute FFA-induced insulin resistance in human skeletal muscle is caused by the activation of these specific PKC isoforms and the IKK-beta/IkappaB/NFkappaB pathway remains to be established.

          Related collections

          Author and article information

          Journal
          12086926

          Comments

          Comment on this article