12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Structure of a AAA+ unfoldase in the process of unfolding substrate

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          AAA+ unfoldases are thought to unfold substrate through the central pore of their hexameric structures, but how this process occurs is not known. VAT, the Thermoplasma acidophilum homologue of eukaryotic CDC48/p97, works in conjunction with the proteasome to degrade misfolded or damaged proteins. We show that in the presence of ATP, VAT with its regulatory N-terminal domains removed unfolds other VAT complexes as substrate. We captured images of this transient process by electron cryomicroscopy (cryo-EM) to reveal the structure of the substrate-bound intermediate. Substrate binding breaks the six-fold symmetry of the complex, allowing five of the six VAT subunits to constrict into a tight helix that grips an ~80 Å stretch of unfolded protein. The structure suggests a processive hand-over-hand unfolding mechanism, where each VAT subunit releases the substrate in turn before re-engaging further along the target protein, thereby unfolding it.

          DOI: http://dx.doi.org/10.7554/eLife.25754.001

          eLife digest

          Proteins perform many important jobs inside cells. Each protein is made of a chain of building blocks called amino acids that fold together to form precise shapes. Old, damaged or poorly constructed proteins tend to be harmful to cells so it is important that they are recycled. Ring-shaped enzymes called AAA+ unfoldases help to recycle these proteins by unfolding their amino acid chains. However, since these enzymes only interact with their target proteins for a short time it has been difficult to find out what happens when the target protein binds to the enzyme.

          AAA+ unfoldases use chemical energy provided by a molecule called ATP to drive protein unfolding. Ripstein et al. used a technique called electron cryomicroscopy to study a AAA+ unfoldase from a microbe called Thermoplasma acidophilum. The enzymes were supplied with a molecule called ATPγS, which is similar to ATP but releases its energy more slowly. Ripstein et al. used this slowed down reaction, as well as new computer algorithms to analyse the microscopy images, to examine the structure of the target bound to the enzyme.

          The experiments show that proteins move through the centre of the enzyme’s ring as they unfold. At any time the enzyme is attached to the amino acid chain of the target protein in several places, which allows it to pull the protein through the ring in a “hand-over-hand” motion. Energy from each ATP molecule drives the enzyme to release one contact with the amino acid chain and form a new contact slightly further along the chain.

          It remains unclear how AAA+ unfoldases identify and bind to the proteins they unfold and how they work alongside other recycling proteins inside cells. AAA+ unfoldases have an essential role in the biology of cells, and contribute to cancer and several other human diseases. Therefore, understanding how these proteins work may aid the development of new drugs to treat these diseases.

          DOI: http://dx.doi.org/10.7554/eLife.25754.002

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics.

          A novel method to flexibly fit atomic structures into electron microscopy (EM) maps using molecular dynamics simulations is presented. The simulations incorporate the EM data as an external potential added to the molecular dynamics force field, allowing all internal features present in the EM map to be used in the fitting process, while the model remains fully flexible and stereochemically correct. The molecular dynamics flexible fitting (MDFF) method is validated for available crystal structures of protein and RNA in different conformations; measures to assess and monitor the fitting process are introduced. The MDFF method is then used to obtain high-resolution structures of the E. coli ribosome in different functional states imaged by cryo-EM.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanism of DNA translocation in a replicative hexameric helicase.

            The E1 protein of papillomavirus is a hexameric ring helicase belonging to the AAA + family. The mechanism that couples the ATP cycle to DNA translocation has been unclear. Here we present the crystal structure of the E1 hexamer with single-stranded DNA discretely bound within the hexamer channel and nucleotides at the subunit interfaces. This structure demonstrates that only one strand of DNA passes through the hexamer channel and that the DNA-binding hairpins of each subunit form a spiral 'staircase' that sequentially tracks the oligonucleotide backbone. Consecutively grouped ATP, ADP and apo configurations correlate with the height of the hairpin, suggesting a straightforward DNA translocation mechanism. Each subunit sequentially progresses through ATP, ADP and apo states while the associated DNA-binding hairpin travels from the top staircase position to the bottom, escorting one nucleotide of single-stranded DNA through the channel. These events permute sequentially around the ring from one subunit to the next.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Alignment of cryo-EM movies of individual particles by optimization of image translations.

              Direct detector device (DDD) cameras have revolutionized single particle electron cryomicroscopy (cryo-EM). In addition to an improved camera detective quantum efficiency, acquisition of DDD movies allows for correction of movement of the specimen, due to both instabilities in the microscope specimen stage and electron beam-induced movement. Unlike specimen stage drift, beam-induced movement is not always homogeneous within an image. Local correlation in the trajectories of nearby particles suggests that beam-induced motion is due to deformation of the ice layer. Algorithms have already been described that can correct movement for large regions of frames and for >1 MDa protein particles. Another algorithm allows individual <1 MDa protein particle trajectories to be estimated, but requires rolling averages to be calculated from frames and fits linear trajectories for particles. Here we describe an algorithm that allows for individual <1 MDa particle images to be aligned without frame averaging or linear trajectories. The algorithm maximizes the overall correlation of the shifted frames with the sum of the shifted frames. The optimum in this single objective function is found efficiently by making use of analytically calculated derivatives of the function. To smooth estimates of particle trajectories, rapid changes in particle positions between frames are penalized in the objective function and weighted averaging of nearby trajectories ensures local correlation in trajectories. This individual particle motion correction, in combination with weighting of Fourier components to account for increasing radiation damage in later frames, can be used to improve 3-D maps from single particle cryo-EM.
                Bookmark

                Author and article information

                Contributors
                Role: Reviewing editor
                Journal
                eLife
                Elife
                eLife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                08 April 2017
                2017
                : 6
                : e25754
                Affiliations
                [1 ]The Hospital for Sick Children Research Institute , Toronto, Canada
                [2 ]deptDepartment of Biochemistry , University of Toronto , Toronto, Canada
                [3 ]deptDepartment of Molecular Genetics , University of Toronto , Toronto, Canada
                [4 ]deptDepartment of Chemistry , University of Toronto , Toronto, Canada
                [5 ]deptDepartment of Medical Biophysics , University of Toronto , Toronto, Canada
                University of Virginia , United States
                University of Virginia , United States
                Author notes
                Author information
                http://orcid.org/0000-0003-3601-0596
                http://orcid.org/0000-0002-4054-4083
                http://orcid.org/0000-0003-0566-2209
                Article
                25754
                10.7554/eLife.25754
                5423775
                28390173
                23b0c789-961a-4e47-944e-eb29489be7cd
                © 2017, Ripstein et al

                This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 06 February 2017
                : 06 April 2017
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100000038, Natural Sciences and Engineering Research Council of Canada;
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100000024, Canadian Institutes of Health Research;
                Award ID: MOP133408
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100001804, Canada Research Chairs;
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100000038, Natural Sciences and Engineering Research Council of Canada;
                Award ID: 401724-12
                Award Recipient :
                The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Research Article
                Biochemistry
                Biophysics and Structural Biology
                Custom metadata
                2.5
                The structure of a substrate-engaged AAA+ unfoldase suggests a model for processive unfolding that is supported by biochemical data.

                Life sciences
                cryo-em,aaa+,vat,unfolding,atpase,thermoplasma acidophilum,other
                Life sciences
                cryo-em, aaa+, vat, unfolding, atpase, thermoplasma acidophilum, other

                Comments

                Comment on this article