0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reassessment of Bournea Oliver (Gesneriaceae) based on molecular and palynological evidence

      , , , , ,

      PhytoKeys

      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The former genus Bournea is endemic to China, including two species, has been under consideration for incorporation into the expanded genus Oreocharis s.l. in Gesneriaceae. The phylogenetic tree inferred from two DNA sequences (trnL-F and ITS) showed that this genus is deeply nested into Oreocharis s.l. However, the new tree from seven ones (atpB-rbcL, ndhH-rps15-ycf1, rpl132, trnC-trnD, trnL-F, trnT-trnL of chloroplast DNA and ITS regions) revealed that Bournea is the sister group of other of Oreocharis s.l. Furthermore, Bournea is morphologically different from other Oreocharis based on existing data. We suggest keeping Bournea as an independent genus in Gesneriaceae.

          Related collections

          Most cited references 12

          • Record: found
          • Abstract: not found
          • Article: not found

          SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Glossary of pollen and spore terminology

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs.

              Chloroplast genomes supply indispensable information that helps improve the phylogenetic resolution and even as organelle-scale barcodes. Next-generation sequencing technologies have helped promote sequencing of complete chloroplast genomes, but compared with the number of angiosperms, relatively few chloroplast genomes have been sequenced. There are two major reasons for the paucity of completely sequenced chloroplast genomes: (i) massive amounts of fresh leaves are needed for chloroplast sequencing and (ii) there are considerable gaps in the sequenced chloroplast genomes of many plants because of the difficulty of isolating high-quality chloroplast DNA, preventing complete chloroplast genomes from being assembled. To overcome these obstacles, all known angiosperm chloroplast genomes available to date were analysed, and then we designed nine universal primer pairs corresponding to the highly conserved regions. Using these primers, angiosperm whole chloroplast genomes can be amplified using long-range PCR and sequenced using next-generation sequencing methods. The primers showed high universality, which was tested using 24 species representing major clades of angiosperms. To validate the functionality of the primers, eight species representing major groups of angiosperms, that is, early-diverging angiosperms, magnoliids, monocots, Saxifragales, fabids, malvids and asterids, were sequenced and assembled their complete chloroplast genomes. In our trials, only 100 mg of fresh leaves was used. The results show that the universal primer set provided an easy, effective and feasible approach for sequencing whole chloroplast genomes in angiosperms. The designed universal primer pairs provide a possibility to accelerate genome-scale data acquisition and will therefore magnify the phylogenetic resolution and species identification in angiosperms.
                Bookmark

                Author and article information

                Contributors
                Journal
                PhytoKeys
                PK
                Pensoft Publishers
                1314-2003
                1314-2011
                August 26 2020
                August 26 2020
                : 157
                : 27-41
                Article
                10.3897/phytokeys.157.55254
                © 2020

                Comments

                Comment on this article